在1 mg/ml水溶液中使用肾上腺素(1:1000浓度)。请参阅第3页,以确定根据孩子的体重使用要使用的正确剂量。如果使用自动注射器,则将0.1 mg,0.15 mg或0.3 mg IM(适合患者的体重)施用到前外侧大腿上。如果使用另一种肾上腺素配方,建议的剂量为0.01 mg/kg,最大单剂量为0.5 mg。管理IM,最好在大腿前外侧。
开放存取本文采用知识共享署名4.0国际许可证,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并表明是否做了更改。本文中的图片或其他第三方资料包含在文章的知识共享许可证中,除非在资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,且您的预期用途不被法定规定允许或超出了允许的用途,您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。
摘要:我们研究了GA与Cu(001)表面和环境诱导的表面转移的初始阶段,以尝试阐明最近提出的Cu-Ga催化剂的表面化学,该催化剂最近提出了将CO 2氢化为甲醇的CO-GA催化剂。结果表明,GA在真空中沉积时很容易与Cu进行混合。然而,即使是气体环境中的氧气痕迹也会导致GA氧化,并形成二维(“单层”)GA氧化物岛,均匀地覆盖了Cu表面。在高度压力和温度下(0.2 MBAR,700 K),表面形态和GA的氧化状态保留在H 2中以及CO 2 + H 2反应混合物中。结果表明,在反应条件下,GA掺杂的Cu表面暴露了包括GAO X /CU界面位点在内的各种结构,必须考虑阐明反应机制。
类似芬顿的反应中使用的化学氧化剂涉及过氧化氧化物(H 2 O 2)和硫酸盐(例如过氧硫酸盐(PDS,S 2 O 8 2 - )和过氧甲硫酸盐(PMS,HSO 5-−S)),可以激活使用同型和Hetogenos of catlyos和Hetogenos Catlyss,它们可以激活其。尽管金属离子(例如,Co 2+,Fe 2+,Cu 2+)及其可溶性复合物在同质系统中有效地应用,16-18这种可溶性催化剂的双方恢复会导致继发性污染,限制其应用(图。1)。相反,异质的芬顿样催化剂通过提高稳定性和易于分离来解决这些问题。19 - 21尤其是一些金属基杂种催化剂,例如纳米金属氧化物,金属纳米颗粒(NPS)和金属单原子催化剂(SAC),引起了人们越来越多的注意力,这是由于其出色的活性引起的芬顿样反应。22 – 24 However, the con ned surface locations of metal active centers in heterogeneous NP catalysts result in inferior catalytic e ffi ciency compared with their homogeneous counterparts, su ff ering from low metal atom utilization e ffi - ciency because of agglomeration of metal atoms and embed- ding in the bulk of NP catalysts.25,26此外,大多数报道的NP催化剂具有不均匀的粒径分布和多功能表面结构的特性,这给探索固有的催化机制带来了巨大的挑战,并在类似芬顿的反应中建立了结构 - 活性关系。24,27,28
磁场可以作为氢能收集的唯一触发器,尽管磁场具有穿透深度深、噪音和损伤小、控制参数(即幅度和频率)灵活等优势。多铁性和磁电纳米复合材料为利用磁场直接触发制氢提供了机会。[11–14] 虽然磁场可以影响磁性材料中电子的运动,但它们不能产生催化反应所必需的内部电场和电荷。相反,当施加磁场时,多铁磁电复合材料中会发生磁电耦合。在典型的应变介导磁电复合材料中,磁性元件响应磁场并传输磁致伸缩
过渡金属二甲藻(TMD)涂层由于出色的摩擦学行为而吸引了巨大的科学和工业兴趣。范式示例是MOS 2,即使硒化合物和牙柳氏菌表现出了卓越的摩擦学特性。在这里,描述了通过将它们洒到涂有Mo和W薄片的滑动金属表面上的Operando转换为润滑2D Selenides中的创新性。先进的材料表征证实了含有硒化物的薄摩擦膜的贸易化学形成,将摩擦的系数降低至周围空气中的0.1以下,通常使用完全配方的油达到水平。从头算分子动力学模拟揭示了原子机制,从而导致剪切诱导的纳米植物的硒化单层合成。使用SE Nanopowder提供热稳定性,并防止在真空环境中产生膨胀。此外,在接触界面中普遍存在的条件下,SE纳米圆的高反应性产生了高度可重现的结果,这使其特别适合补充带有固体润滑剂的滑动组件,避免了由环境分子引起的TMD-润滑性脱落的持久问题。建议的直接方法展示了一种非常规且聪明的方法,可以合成Operando中的TMD并利用其摩擦和减轻磨损的影响。
为了促进从碳能源依赖型社会向可持续社会的转变,传统的工程策略应进行范式转变,因为它们受到与内在材料特性相关的限制。从理论角度来看,氧析出反应(OER)的自旋相关特性揭示了自旋极化策略在提高电化学(EC)反应性能方面的潜力。手性诱导自旋选择性(CISS)现象因其在实现新突破方面的潜在效用而引起了前所未有的关注。本文从旨在提高自旋相关OER效率的实验结果开始,重点关注基于CISS现象的EC系统。通过各种分析方法验证了自旋极化对EC系统的适用性,以阐明自旋相关反应途径的理论基础和机制。然后将讨论扩展到基于CISS效应的光电化学系统中有效的自旋控制策略。本文探讨了自旋态控制对动力学和热力学方面的影响,还讨论了 CISS 现象引起的自旋极化对自旋相关 OER 的影响。最后,讨论了增强自旋相关氧化还原系统性能的未来方向,包括扩展到各种化学反应和开发具有自旋控制能力的材料。
摘要:脑内活性氧 (ROS) 的产生受稳态控制,有助于正常的神经功能。脑老化或病理条件下控制机制的低效会导致 ROS 过量产生,从而导致氧化性神经细胞损伤和退化。在对氧化应激引起的神经功能障碍具有治疗潜力的化合物中,鸟嘌呤类嘌呤 (GBP) 最为典型,其中最典型的是核苷鸟苷 (GUO) 和核碱基鸟嘌呤 (GUA),它们的作用不同。事实上,将 GUO 施用给急性脑损伤(缺血/缺氧或创伤)或慢性神经/神经退行性疾病的体外或体内模型,可发挥神经保护和抗炎作用,减少活性自由基的产生,并通过多种分子信号改善线粒体功能。然而,将 GUO 施用给啮齿动物也会导致失忆效应。相反,代谢物 GUA 可通过暂时增加 ROS 生成和刺激一氧化氮/可溶性鸟苷酸环化酶/cGMP/蛋白激酶 G 级联来有效治疗记忆相关疾病,而这长期以来被认为对认知功能有益。因此,值得进一步研究以确定 GUO 和 GUA 的治疗作用,并评估这些化合物可以更有效地用于哪些病理性脑部疾病。
