本报告是 SFS 系列的第六份报告,它以 NREL 区域能源部署系统 (ReEDS) 模型中的成本驱动情景为起点,研究电网规模存储部署的运营影响以及这种部署与可变可再生能源贡献之间的关系。我们使用商业生产成本建模软件来评估五种情景的每小时运行情况,这些情景到 2050 年将达到 210 千兆瓦 (GW) 至 930 GW 的安装存储量。我们发现,从现在到 2050 年,存储将在这些电力系统中发挥重要作用 - 通过存储边际成本最低的发电量(通常是太阳能或风力发电厂的过度发电量)并在一天和一年中净负荷最高的时期发电。存储有助于整合可变可再生能源,并提供重要资源来提供持续可靠的电力。
致谢 我们衷心感谢为本报告做出贡献的众多人士。ReEDS 和 dGen 建模和分析团队积极参与了本研究的模型开发和分析,其中包括 Max Brown、Stuart Cohen、Kelly Eurek、Will Frazier、Pieter Gagnon、Nathaniel Gates、Danny Greer、Jonathan Ho、Scott Machen、Kevin McCabe、Matthew Mowers、Ben Sigrin、Dan Steinberg 和 Yinong Sun。我们感谢 Billy Roberts 创建了本研究中使用的地图。我们感谢 Peter Balash、Sam Baldwin、Paul Donohoo-Vallett、Zach Eldredge、Sara Garman、Carey King、Seungwook Ma、Cara Marcy、Chris Namovicz、Kara Podkaminer 和 Paul Spitsen 的评论。本文报道的工作由美国能源部能源效率和可再生能源办公室、战略计划办公室资助,合同编号为 DE-AC36-08GO28308。所有错误和遗漏均由作者独自承担责任。
一旦将 ReEDS 解决方案转换为 PLEXOS 数据库,就可以模拟全年的电网每小时调度。对于 Cambium 数据库,我们将 PLEXOS 作为混合整数程序运行,并进行日前机组投入和调度(不进行任何实时调整以应对小时以下调度或预测误差)。对于每个模拟年份,发电机具有恒定的热率和最大发电机输出。发电机短期边际成本 (SRMC) 通常在全年保持不变,但天然气发电机除外,其 SRMC 会随着天然气价格的每月变化而变化。供需在母线层实现平衡,配电损耗在数据预处理和后处理中捕获,如第 5.7 节所述。BA 间传输表示为具有恒定损耗率的管道流,没有 BA 内传输损耗。发电机停运表示为根据因技术而异的年平均停运率将安装容量降级为有效容量。三种运行储备表示为调节、灵活性和旋转储备,如第 5.10 节所述。
一旦将芦苇解决方案转换为Plexos数据库,就可以将网格的小时调度模拟整整一年。对于CAMBIUM数据库,我们将Plexos作为混合整数程序运行,并带有日前的单位承诺和调度(无需进行任何实时调整,以下调整或预测错误)。对于每个建模年份,发电机的热率,短期边缘成本(SRMC)和最大发电机输出具有恒定的热率。供需在母线级别平衡,如第4.5节所述,在数据预后和后处理中捕获了分配损失。BA间传输表示为管道流量,恒定损耗速率,没有BA内传输损失。发电机的中断表示为离散事件,在该事件中,计划中的中断是由Plexos动态安排的,而强制中断是基于芦苇使用的中断率的随机事件。表示三个操作储备 - 法规,灵活性和旋转储备 - 如第5.2节所述。
通过技术经济评估 (TEA) 模型实施的地热成本和性能评估对于美国能源部 (DOE) 和其他地热行业利益相关者评估地热技术的现状和确定商业上可行的地热开发的现有障碍至关重要。地热发电技术评估模型 (GETEM) 是一种主要的 TEA 工具,用于估算传统水热系统和增强型地热系统 (EGS) 的经济可行性和平准化能源成本 (LCOE)。自 2021 年以来,GETEM 已从复杂的电子表格模型转变为国家可再生能源实验室 (NREL) 开发的系统顾问模型 (SAM) 中用户友好的工具。除了能够扩大地热模型在其他可再生资源中的可见性之外,在 SAM 中使用 GETEM 还具有模拟自动化、更好的可用性、更新跟踪、主动用户输入/反馈和扩展财务建模的优势。 GETEM 用于制定 NREL 年度技术基线 (ATB) 的供应曲线,该基线为可再生能源潜力 (reV) 和区域能源部署系统 (ReEDS) 模型提供输入。NREL reV 模型中的地热模块通过在土地使用特征约束内定义地热资源与现有电网基础设施的地理空间交集来评估美国本土的地热能源潜力。ReEDS 模型是一种容量扩展模型,用于根据当前能源成本和政策模拟美国发电和输电系统的长期建设和运营。为了确保在我们的模型转换和开发中更好地体现当前的行业趋势,我们组织了为期两天的虚拟研讨会,以征求地热行业利益相关者对我们当前在技术经济、资源评估和地热技术部署场景建模方面的方法和假设的意见和建议。参与者包括开发商、运营商、投资者、监管机构、系统建模者、国家实验室研究人员、顾问和其他利益相关者。在本次研讨会上,我们获得了利益相关者对当前地热电厂性能(即容量系数)、最新钻探成本和学习曲线以及闭环和超热岩地热等下一代技术的见解。本次研讨会的其他成果及其对未来地热开发可行性、资源可用性和容量扩展研究的影响进行了汇编和讨论。
ADIT 累计递延所得税 AEO 年度能源展望 ATB 年度技术基线 BA 平衡区 CAPEX 资本支出 D&A 分销和管理 D/A/T 分销、管理和区域内传输 DER 分布式能源 EIA 能源信息署 FERC 美国联邦能源管理委员会 FOM 固定运营与维护 G&T 发电和输电 IOU 投资者所有的公用事业 ISO 独立系统运营商 ITC 投资税收抵免 kW 千瓦 kWh 千瓦时 MACRS 改良加速成本回收系统 MBE 平均偏差误差 MMBtu 百万英热单位 MWh 兆瓦时 NEMS 国家能源建模系统 NREL 国家可再生能源实验室 O&M 运营与维护 OPEX 运营支出 PTC 生产税收抵免 PV 光伏 ReEDS 区域能源部署系统 reV 可再生能源潜力 rMBE 相对平均偏差误差 RPS 可再生能源组合标准 US 美国 VOM 可变运营与维护 VRE 可变可再生能源 WACC 加权平均资本成本
Benzakein博士于1960年获得苏黎世联邦技术研究所的机械工程学位。搬到美国后,他于1962年获得哥伦比亚大学的理学硕士学位,并于1967年获得韦恩州立大学的博士学位。他在通用电气航空开始了自己的工程生涯,在那里他在该职位上成长,并最终领导了所有新商用和军事发动机的工程开发以及未来产品的技术。他于2004年退休,并加入了俄亥俄州立大学的学院,担任赖特兄弟教授兼航空工程系主任。2012年,他搬到了目前担任航空航天和航空助理副总裁的职位,在那里他领导了航空和声学,电力电子,增材制造,材料研究和无人驾驶汽车的不同研究活动。Benzakein博士是美国国家工程学院和法国航空航天学院的成员。他是皇家航空学会,美国航空与宇航学研究所(AIAA)和美国机械工程师学会的会员。他于2001年被授予皇家航空学会金牌。他于2006年获得了普瓦特大学的荣誉博士学位,并于2007年获得了AIAA Reeds Aeronautics奖。他还曾在许多国家学院,工业和美国政府咨询小组中任职。
AC 交流电 AEO 年度能源展望 ATB 年度技术基线 BECCS 含碳捕获与储存的生物能源 CAGR 复合年增长率 CapEx 资本支出 CARB 加州空气资源委员会 CC 联合循环 CCS 碳捕获与储存 CO 2 二氧化碳 CSP 聚光太阳能 CT 燃气轮机 DC 直流电 dGen 分布式发电市场需求模型 DOE 美国能源部 EIA 美国能源信息署 EPA 美国环境保护署 H2-CT 氢燃料燃气轮机 HVDC 高压直流电 IRA 2022 年通胀削减法案 ITC 投资税收抵免 LCC 线路换向转换器 MMBtu 百万英热单位 MMT 百万公吨 MW 兆瓦 MWh 兆瓦时 NETL 国家能源技术实验室 NG-CC 天然气联合循环 NG-CT 天然气燃气轮机 NOx 氮氧化物 NREL 国家可再生能源实验室 OGS 油气蒸汽 O&M 运营与维护 PTC 生产税收抵免 PV 光伏 RE 可再生能源 RE-CT 可再生能源燃气轮机 ReEDS 区域能源部署系统 TW 太瓦 TWh 太瓦时 TW-mi 太瓦英里 USLCI 美国生命周期清单数据库 VSC 电压源转换器
缩略词列表 AEO 年度能源展望 ATB 年度技术基准 CO 2 二氧化碳 CSP 聚光太阳能热能 CST 聚光太阳能热能 DNI 直接正常辐照度 DOE 能源部 EFS 电气化未来研究 EPA 环境保护署 ETES 电热能储存 E2M 电子到分子 FIT 上网电价 FOM 固定运营和维护 FPC 平板集热器 GHG 温室气体排放 GTI 天然气技术研究所 HTF 传热流体 IPH 工业过程用热 IRENA 国际可再生能源机构 LCOE 平准化电力成本 NGCC 天然气联合循环 OCC 隔夜资本成本 O&M 运营和维护 PPA 购电协议 PTC 槽式集热器 PTES 泵送热能 电力储存 PV 光伏 RE-CT 可再生能源燃气轮机 ReEDS 区域能源部署系统 R&D 研究与开发 SAM 系统顾问模型 SEGS 太阳能发电系统 SIPH 太阳能工业过程用热 SolarPACES 太阳能发电和化学能源系统 SM 太阳能多级 STEP 超临界转换电力 SwRI 西南研究院 TES 热能存储 VOM 变量 O&M
要可靠地实现美国电力部门的深度脱碳化,候选政策必须在需求,化石燃料价格以及新风和太阳能的一系列可能的未来轨迹上进行稳健性。使用NREL REEDS模型的修改版本具有跨越需求,燃油价格和技术成本不同轨迹的方案,我们发现一些最近提出的政策可以在2035年到2035年(相对于2005年的排放)或更多,但许多脱碳化(相对于2005年的排放)可以实现80%。两项强大的成功政策是可交易的绩效标准(TPS)和一个具有100%干净目标的混合清洁电标准(CES),部分贷方产生了汽油,以及40美元/mton CO2 CO2替代合规性付款(ACP)后台。两者几乎都与排放等效的有效政策一样有效。40美元的碳税几乎达到了强劲的80%阈值,在大多数情况下,都可以脱碳。90%的CES(没有部分信用)无法实现强大的2035年脱碳化,因为它不需要将煤炭赶出系统。在大多数情况下,简单地扩展将要过期的可再生能源税抵免,并不会引起重大脱碳化,也不依赖于绿色国家的野心增加。