图 2 MSNR 模型训练和评估示意图。 (a) MSNR 旨在通过考虑边缘和社区级别的信息来研究大脑连接-表型关系。该模型采用 n × p × p 矩阵,其中 n 是受试者的数量,p 是每个对称邻接矩阵中的节点数。节点属于 K 个社区,是先验确定的。 (b) 从总样本 (n = 1,015) 中随机选择 20% (n = 202) 作为剩余验证数据。我们进行了五倍交叉验证来选择调整参数 λ 1 和 λ 2 的值。这两个参数分别表示平均连接矩阵 (Θ) 和社区级连接-协变量关系矩阵 (Γ 1,...,Γ q) 的 l 1 范数的核范数惩罚。整个过程重复了五次。 (c)然后使用(b)中确定的调整参数对其余 80% 的总数据集(n = 813)进行模型训练。然后计算样本外预测误差,作为验证集上已知和估计连接矩阵之间差异的 Frobenius 范数。(d)我们还通过置换程序评估了最终模型,其中我们破坏了大脑连接和协变量数据之间的联系,以生成样本外预测误差的零分布
2。方法2.1。研究设计和设置使用Consores软件(一种用于监视法国公共卫生机构提供的AMC和AMR数据的工具),在2014年1月至2019年12月之间进行了法国教学医院的回顾性生态研究。Nimes University医院有1773张病床,包括46张病床,有24张床,用于血液学,235张手术,长期为190。在研究期间,每年接受41 300至50 100个住院患者,住院时间为55 200天/月,每年增加到2019年的57 500天/月。2.2。细菌样品分析了研究期间收集的大肠杆菌阳性的所有微生物样品。从门诊病人获得的样本,或在急诊室或在入院48小时内收集的样本,除非患者
下载宏后,将其保存在已知位置,您可以指定确切的路径。创建一个新的语法文件,然后打开您的数据集,或者添加get file ='您的数据集位置和文件名命令'命令'到语法文件的开头,以指定数据文件的位置。1然后添加以下命令(使用过程版本4.3语法对此进行了测试),替换了我的x(初始预测器),y(最终结果)和M(介体)的变量名称的变量名称,并将其替换为语法文件:cd“ c:\ jason \ temp”。插入file ='c:\ jason \ spsswin \ macros \ process.sps'。执行。过程y = hrs /x = age /m = islsum /total = 1 /boot = 10000 /seed = 10000 /model = 4 /stand = 1。执行。确保插入文件命令指向您保存的进程宏的确切位置。然后,在语法窗口中突出显示整个语法,然后运行。输出输出的第一部分(用星号线标记)给出了上图中描述的每个直接回归系数,并且与您在SPSS中使用通常的回归命令所获得的直接回归系数相同。The bootstrap tests of the indirect effect are found in the final section under the heading " TOTAL, DIRECT, AND INDIRECT EFFECTS OF X ON Y " and then under the subheading " Indirect effect(s) of X on Y :", where Effect gives the average estimate for indirect effect from the bootstrap samples, BootSE gives the standard error estimate, and BootLLCI and BootULCI are 95% confidence limits.如果95%的置信度限制包括零,则间接效应测试并不重要。2运行矩阵过程:************** SPSS版本4.3.1 ************************************************************************************** ************ www.afhayes.com文档可在Hayes(2022)提供。www.guilford.com/p/hayes3 *******************************************************************************************************************************************型号:4 y:hrs x:hrs x:age m:islsum样本1 mac的位置没有驱动器和前进的字母和前进的范围,'/subfie in your subfiled limer lime lime of subfiled lime'偏置校正(“加速置信度限制”),因为偏置校正的极限可能具有I型错误率略有升高(Fritz,Taylor和Mackinnon,2012; Hayes&Scharkow,2013年)。
摘要 - 注意力多动障碍(ADHD)是一种神经发育障碍,影响了一定程度的儿童及其生活方式。一种治疗这种疾病的新方法是在整个患者中使用脑部计算机界面(BCI)学会自行自我调节自己的症状。在这种情况下,研究导致了旨在估计对这些界面的关注的工具。同时,虚拟现实(VR)耳机的民主化以及它为多个方面产生有效的环境的事实:安全,灵活和生态上有效,导致其用于BCI应用程序的使用增加。另一点是人工智能(AI)在不同领域的医疗领域越来越发达。在本文中,我们提出了一种创新的方法,目的是从生理信号的测量中估算注意力:脑电图(EEG),凝视方向和头部运动。该框架是为了评估VR环境中的注意力的开发。我们为特征提取和专用的机器学习模型提出了一种新颖的方法。试点研究已应用于一组志愿者,与最先进的方法相比,我们的方法的错误率较低。关键字 - 虚拟现实,机器学习,大脑计算接口,眼睛跟踪
在本文中,我们通过长时间的时间间隔收集的观测值分析回归。对于形式的渐近分析,我们假设样品是从连续的时间随机过程中获得的,并让采样间隔δ缩小至零,样品跨度t增加到无穷大。在此设置中,我们表明,只要δ→0相对于t→∞,标准的WALD统计量向无穷大和回归偏差就会变得虚假。这种现象确实是本文中考虑的回归类型在实践中经常观察到的现象。相比之下,我们的渐近理论预测,如果我们使用适当的长期差异估计的WALD测试的强大版本,则伪造性消失。使用长期对短期利率的长期回归我们的经验说明,这得到了强烈和明确的支持。
本文介绍了一种新颖的方法,可以通过将Deming周期与中性粒子统计数据相结合来增强基于能力的学习。基于能力的教育专注于实践技能,但是学生表现和评估的不确定性可能会阻碍其有效性。中性粒子统计与传统方法不同,明确模型不确定性,为教育数据中的不确定性提供了更完整的情况。这种方法将中性粒的数字整合到了培养分析中,以预测学习结果并量化这些预测的置信度。这些预测及其相关的不确定性,然后告知Deming周期(计划检查),使教育工作者能够根据数据驱动的信息动态调整教学策略。这会导致更明智的决策,提高了预测的准确性和可靠性,并最终促进了基于能力的教育的持续改进。
摘要 - 需要准确评估电动汽车 (EV) 电池的健康状态 (SoH),以管理其性能、安全性和使用寿命。本研究旨在提出一种使用随机森林回归 (RFR) 模型的数据驱动方法来准确预测 SoH。该方法基于历史电池性能数据来训练 RFR 模型,该模型对于捕获输入特征和 SoH 指标之间的复杂非线性关系特别有用。基于模型的方法需要电化学模型,而数据驱动的方法通常依赖于广泛的实验室测试,而我们的方法展示了一种计算高效、灵活且准确的方法,该方法适用于多种电池类型和用例。它使用电压、电流、温度和充电/放电速率等关键特征作为预测因子,从而可以全面检查当前和以前的电池行为。该模型已根据各种基准数据集进行了评估,并显示出高水平的准确性和稳健性。
这项研究证明了使用包括人口统计学,生理和传感器衍生的变量的数据集估算血糖水平来估算血糖水平的应用。通过严格的数据准备和假设验证,包括使用Box-Cox转换,模型的有效性和性能得到了增强。逐步选择和假设检验促进了该模型的重新构建,保留了关键预测因子,例如年龄,性别,赫特拉特和糖尿病患者,这些预测因素明显增添了葡萄糖水平。排除了NIR阅读和最后食用的非贡献变量,改善了模型的可解释性,而不会损害其预测精度。结果强调了基于回归的非侵入性葡萄糖监测方法的潜力,为糖尿病管理中具有成本效益且可访问的解决方案提供了基础。虽然FNDING突出显示了明显的预测指标和稳健的模型性能,但未来的工作可以探索高级传感器技术和非线性建模技术的集成,以进一步提高预测精度。这些进步可以显着促进改善糖尿病护理,并促进更广泛的非侵入性监测解决方案的采用。
的确,逻辑回归是社会和自然科学中最重要的分析工具之一。在自然语言处理中,逻辑回归是分类的基础监督机学习算法,并且与神经网络也有密切的关系。正如我们将在第7章中看到的那样,可以将神经网络视为彼此堆叠的一系列逻辑回归分类器。因此,此处介绍的分类和机器学习技术将在整本书中发挥重要作用。逻辑回归可用于将观察结果分类为两个类别之一(例如“积极情感”和“负面情绪”),或将观察结果分类为许多类别之一。由于两级情况的数学更简单,因此我们将在接下来的几个部分中描述第一个逻辑回归的特殊情况,然后Brie-fl y总结了5.3节中多项逻辑逻辑回归的使用。我们将在接下来的几节中介绍逻辑回归的数学。,但让我们从一些高级问题开始。
测量HC是一种快速,无创的方法,用于确定婴儿的头部太大(兆脑)还是太小(小头畸形)。6与标准生长曲线相比,常规的HC测量对于跟踪婴儿的健康至关重要。该程序被认为是“最简单,最便宜,最快的[工具],用于评估中央系统的发展和确定有神经发育障碍风险的新生儿。” 7头圆周也经常在处于危险的婴儿(例如早产或低胎胎婴儿或患有已知遗传疾病的患者)中测量;大多数临床医生在常规良好的访问中包括串行HC测量,或者是由于生长关节以外的原因(即机会性增长测量值)以外的其他婴儿和儿童的定期护理。8