为了在现实世界中部署强化学习(RL)代理,它们必须能够推广到看不见的环境。但是,RL在分布外的概括方面挣扎,通常是由于过度拟合培训环境的细节。尽管可以应用监督学习的正则化技术来避免过度插入,但超级学习和RL之间的差异限制了其应用。为了解决这个问题,我们提出了RL的信噪比调节的参数不确定性网络(SNR PUN)。我们将SNR作为正规化网络的参数定向的新量度,并提供了正式分析,解释了SNR正则为什么对RL效果很好。我们证明了我们提出的方法在几个模拟环境中概括的有效性;在一个物理系统中,显示了使用SNR PUN将RL应用于现实世界应用程序的可能性。
(3)深层生成模型求解随机过程:研究求解随机模型(例如扩散模型)(例如扩散模型)(例如,扩散模型)中随机过程的随机微分方程(SDE)或部分微分方程(PDE)(PDE)(PDES)。模型)在培训期间(5)生成模型中的隐式偏见和正则化:探索生成模型中存在的隐式偏见及其对概括的影响。研究显式和隐式正则化技术的有效性(6)生成模型的鲁棒性和泛化边界:分析生成模型的鲁棒性界限及其在分布分布的场景下(7)潜在的空间几何形状(7)潜在的空间几何学和流形学习:分析与生成模型的潜在空间和与生成数据分配的分析及其关系分配的相关性。探索如何平衡潜在空间中的多样性和发电质量,并研究复杂数据情景中不同流形学习技术的有效性和局限性
表1:暂定讲座时间表日期主题第1周1:大约在本课程模块1:增强学习介绍第2周2个模块1(续):强化学习简介第3周第3周模块2:动态编程模块3:无模型方法和预测周4周4模块3(续):模型模块4:contict forter-forthation fortery fortery fortery fortery fortery never tey nection forter tey Mode tey Undert'Mode Tegrile Weeks 4:5个模块4:cont Intern oftere fote' 5: Value-Function Approximation Week 6 Module 6: Introduction to Supervised Learning Week 7 Module 7: Linear Models Week 8 Module 7 (cont'd): Linear Models Week 9 Spring Break Week 10 Module 8: Model Selection, Regularization, and Model Assessment Week 11 Module 9: Metrics Beyond Accuracy Week 12 Module 10: Neural Networks Week 13 Module 11: Decision Trees Week 14 Module 12: Ensemble Learning Week 15 Module 13: Support Vector Machines Week 16 Module 14:计算学习理论无监督学习广告的要素
最近,已经启动了几种针对地球大气的远红外和微波遥感的新一代工具,使我们能够根据热发射技术观察大气成分。这些新技术和观察数据为将来更加专门的大气研究任务铺平了道路。我论文的动力是对解决大气遥感中出现的非线性反问题的强大版本算法的兴趣日益兴趣。提出了高分辨率辐射转移计算的检索代码PIL(对肢体发声的反转),并提出了来自红外和微波肢体声音测量测量的大气参数的重建。采用的前进模型通过考虑仪器性能和测量特征,以有效的方式模拟物理上现实的肢体发射光谱。尤其是,自动差异(AD)技术提供了快速可靠的确切JACOBIAN的实现,是远期模型的特殊优化功能。反转方法基本上是基于具有自适应(直接和迭代)数值正则化方法的非线性最小二乘框架。这些正则化技术的性能依赖于正规化参数选择方法的设计和A后部停止规则。检索误差的表征,包括平滑误差,噪声误差和模型参数误差,评估了正则化解决方案的准确性。关键错误来源,数据质量)。PILS与荷兰空间研究所(SRON)制定的检索代码之间的比较,处理辐射转移和倒置计算,并用预先确定的输入进行处理,旨在阐明实施的正确性和一致性。在正向模型中的小差异主要是由于连续吸收和辐射传递方程的整合而导致的。检索结果中差异的可能原因是所采用的不同反演方法(正则化,先验信息)和离散化的后果。通过分析合成和真实的辐射光谱,讨论了通过Telis(Terahertz和Simbillimimightimeter Limb Sounder)从气球传播测量(Terahertz和simbillimimightimeter Limb Sounder)中取出气体检索的结果。羟基自由基(OH)检索的灵敏度研究用于评估PIL的反演性能,并揭示Telis测量能力的初步期望(例如,此外,臭氧(O 3),氯化氢(HCl),碳碳
深层生成模型(DGM)是用于学习数据表示的多功能工具,同时合并了域知识,例如条件概率分布的规范。最近提出的DGMS解决了比较来自不同来源的数据集的重要任务。这样的示例是对比分析的设置,该分析的重点是描述与背景数据集相比富含目标数据集中的模式。这些模型的实际部署通常假定DGM自然推断出可解释的和模块化的潜在表示,这在实践中是一个问题。因此,现有方法通常依赖于临时正规化方案,尽管没有任何理论基础。在这里,我们通过扩展非线性独立组件分析领域的最新进展,提出了对比较DGM的可识别性理论。我们表明,尽管这些模型在一般的混合功能上缺乏可识别性,但当混合函数在零件上时,它们令人惊讶地变得可识别(例如,由Relu神经网络参数化)。我们还研究了模型错误指定的影响,并从经验上表明,当未提前知道潜在变量的数量时,以前提出的用于拟合比较DGM的正则化技术有助于识别性。最后,我们引入了一种新的方法,用于拟合比较DGM,该方法通过多目标优化改善了多个数据源的处理,并有助于使用约束优化以可解释的方式调整正规化的超参数。我们使用模拟数据以及通过单细胞RNA测序构建的细胞中的遗传扰动数据集以及最新的数据集验证了我们的理论和新方法。关键字:非线性ICA;深层生成模型;变分推断;解开;
虽然神经网络架构的进步已导致语义分割任务最近取得了重大进展,但获取大量标记分割掩码的挑战限制了它在医学图像分析等实际应用中的广泛使用。这导致了一系列专注于半监督分割的新兴工作,其中可以使用大量未标记数据和少量标记数据来训练分割模型。半监督分类的最新研究表明,当有效使用一致性正则化等简单技术时,性能提升可能非常显著。在这项工作中,我们探索了一致性正则化在半监督分割中的有效使用,并表明当我们将一致性损失与选择信息标记图像的鉴别器结合使用时,生成的模型在多个标准基准上的表现明显优于之前的半监督语义分割工作。我们的实现代码可在 https://github.com/samottaghi/brain-segmentation 上找到。
●分类特征的本机处理:该模型本质地了解和过程分类数据,而无需手动一式壁炉编码或其他预处理技术。这简化了数据管道,并保留了分类变量内的关系。●使用时间数据的稳健性能:该模型有效地捕获了时间序列数据的模式和趋势,使其适合涉及预测,异常检测或序列分析的应用。●高心电图特征的有效处理:模型可以管理具有大量唯一值(高基数)的功能,而计算复杂性或内存需求的显着增加。●内置的缺少值处理:模型可以优雅地容纳缺失的数据而无需插入或删除,从而确保由于数据集不完整而不会丢失有价值的信息。●高级正则化技术以防止过度拟合:该模型结合了L1和L2正则化,辍学或早期停止以控制模型复杂性并防止过度拟合的技术,从而改善了对看不见数据的概括性能。
)和基于性能;在规定规范之后,可以进一步扩展参与。选定的候选人无权要求在Jhansi的RLBCAU中索取正则化或吸收。研究所主管权威的决定将是最终的,并且在各个方面具有约束力。主管当局还应保留如上所述终止工作合同的权利,甚至在
摘要。混合建模将机器学习与科学知识相结合,以增强对自然定律的解释性,概括和遵守。尽管如此,等于等待和正则化偏见在混合建模中构成挑战,以实现这些目的。本文介绍了一种通过因果推理框架估算混合模型的新方法,该方法专门采用双机器学习(DML)来估计因果关系。我们在两个与二氧化碳通量有关的问题上展示了它对地球科学的使用。在Q 10模型中,我们证明了基于DML的杂种建模在估计因果参数方面优于最终深度神经网络(DNN)方法,证明效率,正规化方法对偏见的稳健性以及稳固性。我们的方法应用于碳通量分配,在适应异质因果效应方面具有灵活性。这项研究强调了明确定义因果图和关系的必要性,并倡导这是一种一般的最佳实践。我们鼓励在混合模型中继续探索因果关系,以使知识指导的机器学习更加可解释和值得信赖。