[1] R. Sutton和A. Barto,《加固学习简介》,麻省理工学院出版社,1998年。[2] C. Szepesvari,《增强学习算法》,Morgan&Claypool Publishers,2010年。[3] C. Watkins,从延迟的奖励中学习,博士学位论文,剑桥大学,英格兰,1989年。[4] M. Wiering和M. Van Otterlo,加固学习:最新的ART,Springer,2014年。[5] M. Puterman,马尔可夫决策过程:离散随机动态编程,Wiley,1994年。[6] D. P. Bertsekas,动态编程和最佳控制,第一卷和II,雅典娜科学,2017年。[7] W. B. Powell,近似动态编程,Wiley,2011年。[8]选定的纸
深度加强学习(DRL)在许多复杂的决策任务中都取得了成功。然而,对于许多现实世界应用,标准的DRL培训在具有脆弱性能的代理商中恢复,特别是在关键问题问题上,发现安全和成功的策略都非常具有挑战性。已经提出了各种探索策略来解决这个问题。但是,他们没有考虑当前的安全性能的信息;因此,它们无法系统地在与培训最相关的状态空间部分上进行系统。在这里,我们提出了基于估计的深度强化学习(稀有)中的状态,该框架介绍了两种创新:(i)将安全评估阶段与国家修复阶段与国家修复阶段,即,在未访问的状态和(ii)估计的promiere extimies nefiperies of n.gap中,gap secried and gap secried seformist of the MAR均进行了iSe。我们表明,这两种创新都是有益的,并且在经验评估中,罕见的优于深度学习和探索等基线。
电气和电子工程师协会 › iel7 作者 VHL Lopes · 2022 · 被引用 1 — 作者 VHL Lopes · 2022 被引用 1 与信道建模和仿真相关,特别关注... 采用的块结构可以表示标准的多帧组织。 17 页
1 防卫装备早期部署新措施 2 加强防卫生产基地 3 研究与开发 4 防卫能力支撑要素 5 强化日美同盟及促进与地区和谐的措施 6 加强安全保障合作 7 应对气候变化的举措 8 精简举措 9 自卫队的组织结构 10 自卫队人员数量 11 增加官员数量等 12 要求改革税制
- 培训语言模型以人为反馈的指示 - 直接偏好优化:您的语言模型是秘密的奖励模型 - 精细的人类反馈为语言模型培训提供了更好的奖励 - 开放问题和从人类反馈>的强化基本限制
我们考虑在马尔可夫决策过程中学习,在马尔可夫决策过程中,我们没有明确地赋予重新功能,但是我们可以在这里遵守专家,以展示我们想学习的任务。此设置在应用程序(例如驾驶任务)中很有用,很难写下明确的奖励功能,以准确地指定应如何交易不同的desiderata。我们认为专家试图最大程度地发挥奖励功能,该奖励功能可作为已知功能的线性组合,并给出了一种学习专家所展示的任务的算法。我们的al-gorithm基于使用“逆增强学习”来试图恢复未知的奖励功能。我们表明,我们的算法终止了少数迭代,即使我们可能永远无法恢复专家的奖励功能,算法的策略也将达到与专家接近的绩效,在此,在此,相对于Expt exptt的未知奖励函数,在这里可以衡量。
多次无误攻击是饱和和克服导弹防御系统的最简单方法之一。为了提高针对此类攻击者群体的拦截效率,有必要根据其运动学局限性分配拦截器。此外,这样的分配方案必须是可扩展的,以应对大型方案并允许动态重新分配。在本文中,我们首先提出了这种武器目标分配(WTA)问题的新表述,并提供了使用加固学习(RL)以及贪婪的搜索算法来解决它的分散方法。从每个追随者与所有目标的角度考虑参与。同时,其他拦截器与目标群体相关,而其他团队成员则可以使用其分配和成功概率。为了改善中途轨迹的塑造,在追随者和进来的对手之间放置了静态虚拟目标。每个拦截器根据从计算有效的仿真环境中的大量场景中学到的策略动态选择目标。RL输入状态包含目标的拦截器达到性覆盖范围以及其他导弹成功的概率。RL奖励汇总了团队绩效,以鼓励在分配层面上进行合作。相关的可及性约束是通过采用拦截器运动的运动学近似来分析获得的。RL的使用确保所有拦截器的实时可扩展和动态重新分配。我们将基于RL的分散WTA和指导方案与贪婪解决方案的性能进行比较,显示了RL的性能优势。
摘要 - 我提出了一种新颖的增强学习方法,用于在模拟环境中训练四足机器人。在动态环境中控制四足机器人的想法非常具有挑战性,我的方法提出了最佳的政策和培训方案,资源有限,并且表现出色。该报告使用RaisimgyMtorch开源库和专有软件Raisim进行模拟Anymal机器人。我的方法以训练时的机器人步行方案的评估为中心,以制定马尔可夫决策过程。使用在Actor-Critic模式下使用的近端策略优化算法来解决结果的MDP,并使用一台台式机收集了数千个状态转换。这项工作还提出了一个控制器方案,该计划在模拟环境中显示了数千个时间步骤。这项工作还为早期研究人员提供了他们喜欢的算法和配置的基础。
实施,实验和结果38 5.1。软件实施38 5.1.1 TensorFlow 38 5.1.2 Pendulum驱动器38 5.1.3 Pendulum Environment 38 5.1.4 Raspberry Pi Software 39 5.1.5深钢筋学习39 5.2。硬件实现39 5.2.1带电机驱动器的Raspberry Pi 39 5.2.2带电机旋转编码器的Raspberry Pi 40 5.2.3 Raspberry pi搭配摆旋转旋转编码器40 5.3。实验实现和设置40 5.3.1环境40 5.3.2参数41 5.4。仿真结果42 5.4.1应用突然变化44