摘要光原子时钟和光学时间传输的最新进展已使精确计量学的新可能性进行了基本物理和时机应用的两种测试。在这里,我们描述了一个太空任务概念,该概念将将最先进的光原子钟放在地球周围的怪异轨道上。高稳定性激光链路将将轨道航天器的相对时间,范围和速度连接到地球站。此任务的主要目标是测试重力红移,这是一种经典相对论的经典测试,其灵敏度超出了当前限制的30 000倍。其他科学目标包括其他相对论测试,对暗物质的搜索和基本常数的漂移以及建立高精度的国际时间/地理参考。
光学原子钟和光学时间传输的最新进展为基础物理测试和计时应用的精密计量提供了新的可能性。这里我们描述了一个太空任务概念,该概念将把最先进的光学原子钟放置在地球偏心轨道上。高稳定性激光链路将把轨道航天器的相对时间、范围和速度连接到地面站。这次任务的主要目标是测试引力红移,这是广义相对论的经典测试,灵敏度是当前极限的 30,000 倍。其他科学目标包括其他相对论测试、增强对暗物质和基本常数漂移的搜索,以及建立高精度国际时间/测地线参考。1. 简介
一般相对论和量子理论的发现都需要放弃重大误解。今天,统一量子理论和一般相对论非常困难的事实表明,至少需要再克服一个重大的误解。但是,可能需要放弃对时空和物质本质的深刻信念,以清除发展量子重力理论的道路?关于时空和物质的一种信念是,尽管它们确实相互作用,但它们从根本上是不同的,时空代表一个阶段,这本身是动力学的,在哪个阶段,以巨大或无质量物质的形式演员在其中移动。本研究提出了[1]中口头提出的想法,询问舞台和演员的图片是否可能是需要放弃的误解,它探索了新图片所存在的一种可能性。
物理学中最为成熟的两个理论框架是广义相对论和量子场论。广义相对论认为,与刚性背景相反,时空本身是一个动态实体,它与存在于其中的物质相互作用。另一方面,量子场论声称,我们与之相互作用的所有基本粒子实际上都是场的量化激发。这两种理论都经受住了实验的考验,精度令人难以置信;然而,它们都存在概念问题,这表明还有我们尚未发现的更深层次的理论。广义相对论在模拟从苹果掉落到宇宙膨胀等现象方面非常成功,但它也预测了自身的失败:时空奇点不可避免地由恒星坍缩形成,此时曲率变为无限大。另一方面,量子场论受到无限性的困扰更为严重。许多表达式仅以形式表达式的形式存在,尽管可以通过重正化方案消除一些分歧,但我们仍然对量子场论作为自然基本描述的真正有效性产生了质疑。除此之外,尽管广义相对论和量子场论是两种经过最精确测试的理论,但它们是由不相容的数学框架构建的,因此不可能同时成立。还有其他更微妙的问题,例如黑洞信息悖论,它促使我们重新审视我们目前可用的理论。
- 相对论理论 - 作用在卫星上的力 - 大气 - 地球旋转 - 固体土和海洋潮汐 - …•线性和非线性变化/变形/变形==>站点坐标是时间精度的功能:最少的毫米和几个0.1 mm/yr的最佳站点
历史将使约翰·阿奇博尔德·惠勒(John Archibald Wheeler)视为20世纪高耸的智力之一。他的职业生涯跨越了从著名的物理黄金时代到与太空时代,信息革命以及量子和粒子物理学的技术胜利相关的新物理学的过渡。他的贡献,从核物理学的开拓性工作到一般相对论和天体物理学,在这里列出了很多。1他对三代物理学家的影响是巨大的。,但惠勒不仅仅是一位出色且有影响力的理论物理学家。决定以他的荣誉举办研讨会科学和最终现实,这反映了一个事实,即他也是一个鼓舞人心的有远见的人,他将本卷与希腊哲学家Heraclitus相比,将物理学和宇宙学是一种独特的思想和推理方式。“科学进步”,惠勒曾经对我说:“归功于思想的冲突,而不是稳定的事实积累。”惠勒一直热爱争议。毕竟,物理的黄金时代是建立在它们上的。相对论的理论从统一运动的相对性原理(可以追溯到伽利略)和麦克斯韦(Maxwell)的电气磁性方程式之间的不一致性提出,这预测了光速固定的光速。量子力学来自热力学与辐射能的连续性质的不兼容。Wheeler也许以他在引力理论中的工作而闻名,该理论在爱因斯坦的一般相对论中获得了标准表述。尽管被誉为人类智力的胜利,也是最优雅的科学理论
本文提出了通过整合量子信息测量(特别是纠缠熵和量子复杂性)来扩展爱因斯坦场方程。这些修改后的方程旨在弥合广义相对论和量子力学之间的差距,提供一个统一的框架,将时空的几何特性与量子信息理论的基本方面结合起来。这种方法的理论意义包括可能解决黑洞信息悖论等长期存在的问题和暗能量的新视角。本文介绍了经典解的修改版本,例如史瓦西度量和弗里德曼方程,并结合了量子修正。它还概述了引力波传播、黑洞阴影和宇宙学可观测量等领域的可测试预测。我们提出了几种未来研究的途径,包括探索与其他量子引力方法的联系,设计实验来测试该理论的预测。这项工作有助于对量子引力的持续探索,提供了一个可能将广义相对论和量子力学与可测试预测统一起来的框架。
20 世纪 20 年代,量子力学的发现彻底改变了我们对宇宙的理解。这一非直觉的开创性理论以能量和角动量的量子本质为基础。电子不能拥有任何能量,其能量只能取离散值。因此,不确定性原理确保我们不可能同时了解物理系统的所有信息——我们对粒子位置的了解越多,对其动量的了解就越少。突然之间,粒子系统可以存在于状态叠加中,似乎只在观察时“决定”一种状态。然而,尽管量子力学的性质非常奇怪,但在迄今为止进行的每项实验中,它似乎都是正确的。与此同时,另一种新的物理理论正在改变我们理解世界的方式。爱因斯坦的广义相对论将时间和空间重新定义为同一时空结构的组成部分。当存在能量或物质时,时空本身会弯曲和移动,从而产生我们所观察到的引力。因此,我们了解到时间是相对的,时间流逝的速度因观察者的不同而不同。广义相对论的预测,包括黑洞和弯曲光路的存在,也已得到实验的证实。最近,LIGO/Virgo 合作观测到了第一道引力波——由巨大黑洞旋转引起的时空波——这是广义相对论的另一个重要预测[1]。随着实验增加了我们对这两种理论准确性的信心,物理学家们开始寻找一种能够将两者结合起来的更完整的物理理论。所谓的“万物理论”旨在同时解释所有基本力。然而,100 年后,很明显,建立和测试这样的理论并不容易。这是因为这两种对自然的描述存在一系列根本性的核心矛盾。在本文中,我将重点讨论其中一个核心矛盾——时间问题。也就是说,广义相对论将时间描述为相对的,根据观察者而变化和转移。没有绝对时间,也没有通用参考系。但量子力学的汉密尔顿描述使用时间作为绝对背景。在量子力学中,概率被分配给在某些时刻进行的测量,这些测量由系统外部的时间坐标判断。虽然量子系统中存在位置和动量的干扰替代方案,但没有干扰