sub:IST SEM新生(SEP方案)和I SEM(中继器)的行为。ii&v sem(Fresher&Repeater's)(NEP方案)BA / BA(表演艺术) / BVA / BVA(动画与多媒体) / bfa / bfa / bsw / b.sc / b.sc / b.sc(时尚与服装设计) / b.sc(Interior Design) (生物科学) / b.sc(地理) / bca / b.com./b.com(保险和精算师) / b.com(物流与供应链管理) / b.com(旅游与旅行管理) / bba / bba(航空管理) / ddm / ddm / bhm&bva&bva&bva vii vii sem(新生)和1月至2025年1月至2025年的其他说明。1 BCWD通知号BCK/SS/CR-34/2014-15,日期:14.08.2014。2号ACA-I/A4/UG-CALENDAR/2024-25,日期:08.07.2024。
注意:根据FCC规则的第15部分,已经对该设备进行了测试并发现该设备符合B类数字设备的限制。这些限制旨在提供合理的保护,以防止住宅安装中有害干扰。此设备会生成,用途并可以辐射射频能量,如果未按照说明进行安装和使用,可能会对无线电通信产生有害的干扰。但是,不能保证在特定安装中不会发生干扰。如果此设备确实会对广播或电视接收造成有害干扰,这可以通过关闭设备关闭并继续确定,则鼓励用户尝试通过以下一项或多项措施来纠正干扰:
摘要 —本文对量子通信网络中可扩展性挑战和机遇进行了全面研究,目的是确定对网络影响最大的参数以及扩展网络时出现的趋势。我们设计了量子网络的模拟,该网络由由捕获离子量子比特组成的路由器节点组成,并由贝尔状态测量 (BSM) 节点形式的量子中继器分隔。这样的网络有望安全地共享量子信息并实现高功率分布式量子计算。尽管前景光明,但量子网络仍因噪声和操作错误而遇到可扩展性问题。通过模块化方法,我们的研究旨在克服这些挑战,重点关注扩展节点数和分离距离的影响,同时监测由退相干效应引起的低质量通信。我们的目标是找出网络中对于推进可扩展、大规模量子计算系统至关重要的关键特征。我们的研究结果强调了几个网络参数对可扩展性的影响,突出了对中继器数量和产生的纠缠质量之间权衡的关键见解。本文为未来探索优化量子网络设计和协议奠定了基础。
量子中继器长期以来一直被确定为在长距离内分布纠缠至关重要。因此,他们的实验实现构成了量子通信的核心挑战。但是,关于现实的近期实验设置的实施细节有许多公开问题。为了评估现实的中继器协议的性能,我们提出了Requsim,这是一个全面的基于蒙特卡洛的模拟平台,用于征服豌豆,它忠实地包括损失和模型,例如与时间依赖噪声的记忆,例如记忆。我们的平台使我们能够对量子中继器设置和策略进行分析,这些设置和策略远远超出了已知的分析结果:这是指能够捕获更现实的噪声模型并分析更复杂的中继器策略。我们介绍了许多发现围绕改善性能的策略的组合,例如纠缠纯度和多个中继器站的使用,并证明它们之间存在复杂的关系。我们强调,诸如我们的数值工具对于建模旨在为量子互联网做出贡献的复杂量子通信协议至关重要。
⚫ 2 通道、双向转换器,用于混合模式 I 2 C 应用中 SDA 和 SCL ⚫ 兼容 I 2 C 和 SMBus ⚫ 电压电平转换范围为 0.8V 至 5.5V 和 2.2V 至 5.5V ⚫ 端口 A 工作电源电压范围为 0.8V 至 5.5V(正常电平) ⚫ 端口 B 工作电源电压范围为 2.2V 至 5.5V(静态偏移电平) ⚫ 5V 容限 I 2 C 总线和使能引脚 ⚫ 0Hz 至 1000kHz 时钟频率(由于中继器增加的延迟,最大系统工作频率可能低于 1000kHz) ⚫ 以 V CCB 为参考的高电平有效中继器使能输入 ⚫ 漏极开路输入/输出 ⚫ 无锁存操作 ⚫ 支持跨中继器的仲裁和时钟延长 ⚫可适应标准模式、快速模式和快速模式 Plus I 2 C 总线设备、SMBus(标准和高功率模式)、PMBus 和多个主设备 ⚫ 断电高阻抗 I 2 C 总线引脚
• 首个为量子通信设立的私人量子光学实验室 • 印度首家利用 Quantum Advantage 的金融科技公司 • 量子通信领域超过 12 个 IP • 与印度理工学院海得拉巴分校签署通信中心谅解备忘录 • 与印度理工学院鲁尔基分校、印度理工学院坎普尔分校和印度理工学院达尔瓦德分校开展研究合作 • 与亚利桑那大学量子网络中心 (CQN) 签署谅解备忘录 • 35+ 量子科学家致力于量子创新
量子中继器为长距离量子通信和量子互联网铺平了道路,量子中继器的概念基于纠缠交换,这需要实现受控量子门。频繁测量量子系统会影响其动态,这被称为量子芝诺效应 (QZE)。除了减缓其演化之外,QZE 还可用于通过在测量之间引入一组精心设计的操作来控制量子系统的动态。在这里,我们提出了一种基于 QZE 的纠缠交换协议,该协议几乎实现了单位保真度。我们的协议的实施只需要简单的频繁阈值测量和单粒子旋转。我们将提出的纠缠交换协议扩展到一系列中继站,以构建量子芝诺中继器,无论中继器的数量如何,这些中继器也几乎实现了单位保真度。我们的提议不需要受控门,从而降低了量子中继器的量子电路复杂性。我们的工作有可能通过量子芝诺效应为长距离量子通信和量子计算做出贡献。
摘要 — 在量子中继器成熟之前,量子网络仍然局限于直接连接节点的有限区域或连接到公共节点的节点。我们通过使用安全经典中继器结合量子安全直接通信 (QSDC) 原理来构想量子网络,从而规避这一限制,量子安全直接通信是一种引人注目的量子通信形式,它直接通过量子信道传输信息。这一有前途的解决方案的最后一个组成部分是我们经典的抗量子算法。明确地说,在这些网络中,从抗量子算法中收集的密文使用 QSDC 沿节点传输,在节点处被读出,然后传输到下一个节点。在中继器处,信息受到我们的抗量子算法的保护,即使在量子计算机面前也是安全的。因此,我们的解决方案提供了整个网络的安全端到端通信,因为它能够在新兴的量子互联网中检测和预防窃听。它与运营网络兼容,并将享受流行互联网的引人注目的服务,包括身份验证。因此,它通过逐步演进升级,平滑了从传统互联网到量子互联网(Qinternet)的过渡。它将在未来充当量子计算网络中的替代网络。我们首次展示了由光纤和自由空间通信链路串联构成的基于安全经典中继器的混合量子网络的实验演示。总之,安全中继器网络确实可以使用现有技术构建,并继续支持通往未来量子计算机 Qinternet 的无缝演进路径。
龙桂璐就职于清华大学物理系和低维量子物理国家重点实验室,量子信息前沿科学中心,北京 100084,北京量子信息科学研究院,北京 100193。潘东就职于北京量子信息科学研究院,北京 100193,清华大学物理系和低维量子物理国家重点实验室,北京 100084。盛宇波就职于南京邮电大学电子与光学工程学院,南京 210003。薛其坤就职于清华大学低维量子物理国家重点实验室和物理系,量子信息前沿科学中心,北京 100084,北京量子信息科学研究院,北京 100193,南方科技大学,深圳 518055。陆建华就职于清华大学信息科学与技术学院,北京国家信息科学技术研究中心和量子信息前沿科学中心,北京 100084。Lajos Hanzo 就职于南安普顿大学电子与计算机科学学院,南安普顿 SO17 1BJ,英国。作者要感谢周增荣博士和魏世杰博士在量子抗性算法 LAC 中提供的帮助,并感谢与尹刘国教授的有益讨论。本研究部分由国家自然科学基金(批准号 11974205 和 11974189)、国家重点研发计划(批准号 2017YFA0303700)和广东省重点研发计划(批准号 2018B030325002)资助。L. Hanzo 谨感谢工程和物理科学研究委员会项目 EP/P034284/1 和 EP/P003990/1 (COALESCE) 以及欧洲研究委员会高级研究员基金 QuantCom(批准号 789028)的资金支持。