空间认知能力,包括精神旋转(MR)和视觉空间工作记忆(VSWM)与数学表现相关,并且一些研究表明,对这些能力的培训可以增强数学性能。在这里,我们研究了MR和VSWM培训的行为和神经相关性以及数字线(NL)培训的结合。6-7岁的57名儿童与VSWM或MR进行了25天的NL培训,并参加了学校的脑电图(EEG)仪式,以衡量培训前后VSW任务期间的静止状态活动和稳态的视觉诱发潜力。6-7岁的五十个孩子接受了通常的教学,并担任对照组。与对照组相比,两个训练组都在数学的综合度量方面进行了改进。认知改善是对培训的特殊性。在两个训练组中共有的静止状态EEG(RS-EEG)的显着变化是为了权力和连贯性,而VSWM和MR组之间的RS-EEG-变化没有显着差异。两种常见的RS-EEG变化与数学改进相关:(1)中央额叶和右顶叶之间相干性的增加,频率为16至25 Hz,以及(2)左侧额叶与右侧面叶距离23至25 Hz之间的相干性增加。这些结果表明,额顶连贯性的变化与数学表现的增加有关,因此,这可能是进一步研究儿童数学干预措施的有用度量。
严重的脑损伤可能导致意识障碍 (DOC),如昏迷、植物人状态 (VS)、微意识状态 (MCS) 或闭锁综合征 (LIS)。迄今为止,DOC 的诊断仅依赖于临床评估或主观评分系统(如格拉斯哥昏迷量表),这些系统无法检测到细微的变化,从而导致诊断错误。DOC 患者的误诊率高且无法预测意识的恢复,引起了人们对意识评估的极大研究兴趣。研究人员已经探索了使用各种刺激和神经成像技术来改善诊断。在本文中,我们介绍了静息状态和感官刺激方法的重要发现,并重点介绍了在意识评估中被证明有效的刺激。我们首先根据 (a) 应用/不使用刺激(即感觉刺激/基于静息状态)、(b) 所用刺激类型(即听觉、视觉、触觉、嗅觉或心理意象)、(c) 所用电生理信号(EEG/ERP、fMRI、PET、EMG、SCL 或 ECG)来回顾文献。在感觉刺激方法中,听觉刺激已被广泛使用,因为它对这些患者来说更容易进行。嗅觉和触觉刺激的探索较少,需要进一步研究。情绪刺激,如受试者自己的名字或熟悉声音的叙述或受试者自己的面部/家庭照片或音乐,会引起比中性刺激更强烈的反应。基于静息状态分析的研究采用了复杂性、功率谱特征、熵和功能连接模式等措施来区分 VS 和 MCS 患者。静息状态脑电图和 fMRI 是最先进的技术,在预测昏迷患者的恢复方面具有巨大的潜力。此外,基于 EMG 和心理意象的研究试图从 VS 患者那里获得意志反应,从而可以检测他们的命令执行能力。这可能为与这些患者沟通提供有效的手段。最近的研究采用了 fMRI 和 PET 来了解与心理意象相对应的大脑激活模式。这篇综述促进了我们对用于诊断 DOC 患者的技术的了解,并试图为未来的研究提供思路。
Abram, SV, Wisner, KM, Fox, JM, Barch, DM, Wang, L., Csernansky, JG, MacDonald, AW, & Smith, MJ (2017)。额颞叶连接可预测精神分裂症患者的认知共情缺陷和体验性负面症状。人脑映射,38 (3),1111 – 1124。https://doi.org/10.1002/hbm.23439 Abubacker, NF, Azman, A., Doraisamy, S., Azmi Murad, MA, Elmanna, MEM, & Saravanan, R. (2014)。乳腺医学图像语义注释中关联规则挖掘的基于相关性的特征选择。计算机科学讲义,482 – 493。https://doi.org/10.1007/978-3-319-12844-3_41 Adhikari, BM、Hong, LE、Sampath, H.、Chiappelli, J.、Jahanshad, N.、Thompson, PM、Rowland, LM、Calhoun, VD、Du, X.、Chen, S. 和 Kochunov, P. (2019)。精神分裂症中的功能性网络连接障碍和核心认知缺陷。 Human Brain Mapping,40 (16), 4593 – 4605。https://doi.org/10.1002/hbm.24723 Baker, JT, Holmes, AJ, Masters, GA, Yeo, BTT, Krienen, F., Buckner, RL, & Öngür, DJ (2014)。精神分裂症和精神病性躁郁症患者的皮质关联网络破坏。JAMA Psy-chiatry,71 (2), 109 – 118。https://doi.org/10.1001/jamapsychiatry。 2013.3469 Beaty, RE, Kenett, YN, Christensen, AP, Rosenberg, MD, Benedek, M., Chen, Q., Fink, A., Qiu, J., Kwapil, TR, Kane, MJ, & Silvia, PJ (2018). 通过大脑功能连接对个人创造力进行稳健预测。美国国家科学院院刊,115 (5), 1087 – 1092。https://doi.org/10.1073/pnas.1713532115 Berman, RA, Gotts, SJ, McAdams, HM, Greenstein, D., Lalonde, F., Clasen, L., Watsky, RE, Shora, L., Ordonez, AE, Raznahan, A., Martin, A., Gogtay, N., & Rapoport, J. (2016). 感觉运动和社会认知网络中断是儿童期发病的精神分裂症症状的基础。 Brain , 139 (1), 276 – 291。https://doi.org/10.1093/brain/ awv306 Binder, JR、Desai, RH、Graves, WW 和 Conant, LL (2009)。语义系统在哪里?对 120 项功能神经影像学研究的评论与荟萃分析。大脑皮层 , 19 (12), 2767 – 2796。https://doi.org/10.1093/cercor/bhp055 Bonnici, HM、Kumaran, D.、Chadwick, MJ、Weiskopf, N.、Hassabis, D. 和 Maguire, EA (2012)。解码内侧颞叶中的场景表征。海马, 22 (5), 1143 – 1153。https://doi. org/10.1002/hipo.20960 Brady, R.、Tandon, N.、Keshavan, M. 和 Ongur, D. (2017)。精神分裂症的阴性症状和额顶叶回路功能障碍。生物精神病学, 81 (10), S111。https://doi.org/10.1016/j.biopsych.2017. 02.285 Briggs, RG、Chakraborty, AR、Anderson, CD、Abraham, CJ、Palejwala, AH、Conner, AK、Pelargos, PE、O'Donoghue, DL、Glenn, CA 和 Sughrue, ME (2019)。下额回的解剖学和白质连接。临床解剖学,32 (4), 546 – 556。https://doi.org/10.1002/ca.23349 Cai, M., Ji, Y., Zhao, Q., Xue, H., Sun, Z., Wang, H., Zhang, Y., Chen, Y., Zhao, Y., Zhang, Y., Lei, M., Wang, C., Zhuo, C., Liu, N., Liu, H., & Liu, F. (2024)。精神分裂症中的同源功能连接中断及其相关基因表达。神经影像,289,120551。https://doi.org/10.1016/j.neuroimage。 2024.120551 Chen, J., Müller, VI, Dukart, J., Hoffstaedter, F., Baker, JT, Holmes, AJ, Vatansever, D., Nickl-Jockschat, T., Liu, X., Derntl, B., Kogler, L., Jardri, R., Gruber, O., Aleman, A., Sommer, IE, Eickhoff, SB, & Patil, KR (2021). 任务定义大脑网络的内在连接模式允许个体预测认知症状
脑震荡是全球关注的健康问题。尽管脑震荡发病率很高,但对这种弥漫性脑损伤的机制的全面了解仍然难以实现。然而,众所周知,脑震荡会导致严重的功能障碍;儿童和青少年受到的影响比成年人更大,恢复时间也更长;正在康复的人更容易遭受更多脑震荡,每次受伤都会增加长期神经和心理健康并发症的风险。目前,脑震荡管理面临两大挑战:没有客观的、临床认可的、基于大脑的方法来确定 (i) 运动员是否遭受了脑震荡,以及 (ii) 运动员何时康复。诊断基于临床测试和症状及其严重程度的自我报告。自我报告非常主观,症状只能间接反映潜在的脑损伤。在这里,我们介绍了一种基于深度学习的长短期记忆 (LSTM) 循环神经网络,该网络仅使用一段短暂(即 90 秒)的静息状态 EEG 数据样本作为输入,即可区分健康和急性脑震荡后青少年运动员。运动员在数据收集过程中既不需要执行特定任务,也不需要受到刺激,并且获取的 EEG 数据既没有经过过滤、清除伪影,也没有进行显式特征提取。LSTM 网络使用 27 名患有运动相关脑震荡的男性青少年运动员的数据进行训练和测试,以 35 名健康青少年运动员为基准。在严格测试期间,分类器始终以 > 90% 的准确率识别脑震荡,其整体中值曲线下面积 (AUC) 对应于 0.971。这是第一个仅依赖易于获取的静息状态 EEG 数据的高性能分类器实例。它是朝着开发一种易于使用、基于大脑的、在个体层面上自动进行脑震荡分类的方法迈出的关键一步。
扩展了Ainsworth [7]的开创性工作,除了安全的依恋外,不安全的依恋样式可以分为三个不同的类别:焦虑,焦虑,避免和混乱的依恋模式。值得注意的是,这些类别与Bartholomew和Horowitz的[8]成人的依恋模式的分类法紧密相吻合,这些分类法可以通过焦虑的焦虑,避免和恐惧的模式。Brennan,Clark和Shaver [9]采用项目反应和因子分析方法来全面检查各种成人依恋测量。他们的调查确定了两个总体因素,称为焦虑和回避,它们囊括了多方面的附着构建体的很大一部分。依恋焦虑是这些关键因素之一,其特征是与拒绝的恐惧和对关注的需求有明显的联系。当伴侣显得无动于衷或不可用时,具有高水平的依恋焦虑的个体往往会逐渐增加压力,这种动态被恰当地称为过度激活。相比之下,避免依恋,第二个关键因素表现为依恋系统的停用,反映了涵盖以消除人际关系依赖性和亲密关系[10]。可怕的依恋模式对应于焦虑和回避依恋特征的高表达。这种矛盾对在强烈压力的条件下的社会应对策略的崩溃构成了重大威胁[17]。与焦虑或回避的有组织的依恋模式有关,这种混乱的样式与影响调节,人际问题和心理病理症状的更严重的困难有关[11-16] [11-16],因为避免恐惧的个体希望与依恋人物紧密相关,并且无法同时信任和依靠它们。先前的研究表明,这种样式在被诊断出严重成瘾性疾病的患者中很普遍,例如阿片类药物依赖性或多核酸固定使用障碍(Schindler等,2019)。
对食欲控制的任何解释都应包含对物理过程的描述,这些过程可能有助于与抑制饮食的人一起进食。然而,直到15年前,一系列独立研究计划投入了身体成分和食欲的生理作用,这项事业被大大忽略了。这些结果表明,无脂肪的质量(FFM)而不是脂肪质量与客观测量的饮食大小和能量摄入(EI)呈正相关。这些发现伴随着证明,静息代谢率(RMR)也与EI呈正相关,而FFM的影响很大程度上由RMR介导。这些发现将驱动器的作用重新引入了食欲控制模型,并指示如何将其与抑制过程集成在一起。EI的决定因素适合进化的观点,在该观点中,高代谢率器官和骨骼组织的能量需求构成了滋补饮食驱动的状态。这种方法应导致食欲的综合模型的发展,这些模型包括人体成分(FFM)和能量消耗(RMR),作为食欲的滋补生物学信号,沿侧面的其他传统滋补(源自源自)和情节信号(胃肠道衍生)。本文是讨论问题的一部分,“肥胖的原因:理论,猜想和证据(第一部分)”。
目的:脑电图(EEG)可用于估计新生儿的生物脑时代。在月经年龄和脑年龄之间的差异,称为脑年龄差距,可能会导致成熟偏差。现有的大脑年龄EEG模型不太适合临床COT侧用途,用于估计新生儿的脑年龄间隙,因为它们依赖于相对较大的数据和预处理要求。方法:我们使用降低的数据要求培训了一种来自具有非神经开发的婴儿和幼儿发展(BSID)结果的早产新生儿的静止状态脑电图数据的深度学习模型。随后,我们在两个临床部位的两个独立数据集中测试了该模型。结果:在两个测试数据集中,仅使用单个通道的静息状态脑电图活动的20分钟,模型生成准确的年龄预测:平均绝对误差= 1.03周(p值= 0.0001)和0.98周(pValue = 0.0001)。在一个测试数据集中,在9个月的随访BSID结局中,严重异常结果组的平均新生儿脑年龄间隙显着大于正常结局组的平均脑年龄差异:平均脑年龄差距的差异差异= 0.50周(p-value = 0.04)。结论:这些发现表明,深度学习模型对来自两个临床部位的独立数据集进行了普遍性,并且模型的脑年龄间隙幅度在正常和严重的随访神经发育结果的新生儿之间有所不同。2024国际临床神经生理联合会。由Elsevier B.V.明显:新生儿大脑年龄间隙的幅度,仅使用单个通道的静息状态脑电图数据的20分钟来估算,可以编码临床神经发育价值的信息。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
1索邦大学,脑研究所 - 巴黎脑研究所-ICM,CNR,Inria,Inserm,inserm,ap-hp,delapitiéSalpêtrière医院,F-75013,法国巴黎2,法国2应用科学和智能系统,国家研究委员会,POZZUOLI,ITALY 3 INTALITE SYSTERSILIL法国马赛4萨萨里大学,生物医学科学系,Viale San Pietro,07100,意大利萨萨里5号IRCCS E. Medea科学研究所,癫痫病单元,通过Costa Alta 37,31015,ITALY 37,31015,意大利Conegliano
Koenig,J.,Abler,B.,Agartz,I.,Åkerstedt,T。,Andreassen,OA,OA,Anthony,M.,Bär,K.-J.,Bertsch,K.,Brown,R.C.,Brunner,R. MD,Fischer,H.,Flor,H.,Gaebler,M.,Gianaros,P.J.,Giummarra,M.J.,Greening,S.G.,Guendelman,S.,Heathers,J.J. D.,Lamers,F.,Lee,T.-H.,Lekander,M.,Lin,F.,Lotze,M.,Makovac,E. ,B.,Ottaviani,C.,Penninx,Bwjh,Ponzio,A.,Poudel,G.R。,Reinelt,J.,Ren,P.,Sakaki,M。 J.F.,Ubani,B.,Van der Mee,D.J.,Van Velzen,L.S.,Ventura-Bort,C.,Villringer,A.,Watson,D.R.,Wei,L.,Wendt,J.,Westlund Schreiner,M.整个生命周期:横截面合并的大型分析。
摘要 焦虑影响着全球大约 5-10% 的成年人口,给卫生系统带来了沉重的负担。尽管焦虑无处不在,并且对身心健康产生影响,但大多数受焦虑影响的人都没有得到适当的治疗。精神病学领域的当前研究强调需要识别和验证与这种疾病相关的生物标记。神经生理学临床前研究是一种确定大脑节律的主要方法,可以作为焦虑主要特征的可靠标记。然而,虽然神经影像学研究一致表明前额叶皮层和皮层下结构(如杏仁核和海马)与焦虑有关,但对于导致这种疾病的潜在神经生理过程仍缺乏共识。允许非侵入性记录和评估皮质处理的方法可能有助于识别可用作干预目标的焦虑特征。在本研究中,我们将源功率共调节 (SPoC) 应用于具有不同程度焦虑特质的参与者样本的脑电图 (EEG) 记录。 SPoC 的开发是为了寻找空间滤波器和模式,这些滤波器和模式的功率与个体参与者的外部变量共同调节。所获得的模式可以从神经生理学角度进行解释。在这里,我们将 SPoC 的使用扩展到多受试者环境,并使用具有真实头部模型的模拟数据测试其有效性。接下来,我们将 SPoC 框架应用于 43 名人类参与者的静息状态脑电图,这些参与者的特质焦虑评分可用。SPoC 对窄频带数据的受试者间分析揭示了具有神经生理学意义的 θ 波段(4-7 Hz)空间模式,这些模式与焦虑呈负相关。结果特定于 θ 波段,在 alpha(8-12 Hz)或 beta(13-30 Hz)频率范围内未观察到。θ 波段空间模式主要位于额上回。我们讨论了我们的空间模式结果对于寻找焦虑生物标志物的相关性及其在神经反馈研究中的应用。
