文本到SQL通过使非专家将其自然语言(NL)问题转换为结构化查询语言(SQL)查询来简化数据库交互。随着大语言模型(LLM)的进步,内在学习(ICL)已成为构建文本到SQL系统的流行选择。现实世界,行业规模的数据库通常包括表和数百列的桌子,并使整个模式将整个模式作为LLM的上下文不可估量昂贵。此要求访问正确的数据库和表集。最近提出了基于增强的增强剂(RAG)方法,用于检索给定查询的数据库和表的相关子集。但是,我们观察到,现有的合成查询生成方法可以产生主要简单的查询,这些查询可能无法充分代表复杂的现实世界查询,因此对生成的SQL的质量产生负面影响。为了解决这个问题,我们提出了一种基于创新的内在强化学习(ICRL)的框架,该框架通过增强模型生成了实践者在推理期间可能构成的复杂查询的能力来完善问题的生成过程。与现有方法相反,我们的框架与多样化和复杂的合成SQL查询产生。我们通过多个实验与公共标准数据集中的代表性最先进模型进行了比较,揭示了我们的方法的有效性,并观察到性能和可伸缩性的实质性提高。与用于识别模式的最新模型相比,数据库/表检索任务中的回忆提高了15-20%,而SQL生成的执行精度高达2%。
2不合理的研究人员,浦那。摘要可以创建许多类型的摘要,具体取决于输入文件的性质,无论是与法律,医学或其他领域有关的。首先了解主题很重要,因为不同的文档需要不同的处理方法。突出显示要点对于关注特定句子至关重要。根据主题和所需的输出,可以使用各种摘要模型。在这种情况下,我们特别关注抹布系统,以及它如何有益于取得更好的结果。关键字:检索方法,生成方法,动态知识集成,流利的语言生成,抹布(检索效果生成)1。引言在出现诸如抹布之类的高级方法之前,采用了各种方法来解决与语言有关的问题。这些可以大致分为两种类型:1。提取(在不更改句子结构的情况下检索信息)2。摘要(通过句子改革的信息检索)这些方法为诸如RAG之类的高级框架奠定了基础,这些方法将检索与生成结合起来,以获得更具动态和准确的结果。1。基于检索的方法这些方法在维护句子的原始措辞和结构时检索相关数据。常见的示例包括提取性摘要,其中关键短语或句子是直接从源中选择而没有修改的[1]。a。有效但缺乏语义理解。传统信息检索(IR)方法TF-IDF(术语频率为单位的文档频率):基于术语频率分段文档频率分数的排名文档。tf-idf是一种统计指标,用于评估文档中单词相对于文档的集合(或语料库)的重要性[2]。它广泛用于文本挖掘和信息检索任务,例如文档排名和关键字提取[3]。BM25(最佳匹配25):对TF-IDF的改进,结合了术语饱和度和文档长度归一化[4]。广泛用于搜索引擎的基于相关性的排名。BM25是一种基于TF-IDF基础的高级信息检索算法,它解决了其一些关键局限性[5]。它被广泛认为是搜索引擎和文本检索系统
监管文件是许多行业的关键组成部分,包括金融,医疗保健和保险,以遵守标准和法律。这些文档的特征是复杂的法律术语,层次结构和频率更新。因此,这给解释和实施带来了困难。这些不兼容性导致负面结果,例如重大的经济惩罚,声誉丧失和运营中断。监管文件的复杂性提出了有效的信息检索和合成的先进系统的必要性。检索功能生成(RAG)系统为检索机制和答案生成提供了有希望的解决方案。先前在监管自然语言处理(REGNLP)的研究发现了POTEN-
最先进的神经检索者主要关注英语等高源语言,这阻碍了他们在涉及其他语言的检索中采用。当前通过杠杆化的多语言审计语言模式,可以证明缺乏非英语语言的高质量标记数据。但是,这些模型需要多种语言的大量特定于任务特定的微调,通常在训练阶段的语料库中以最少的反映语言表现较差,以在培训阶段之后结合新语言。在这项工作中,我们提出了一个新颖的模块化检索模型,该模型从单个高资源语言的丰富数据中学习,并有效地转移到各种语言,从而消除了对语言特定标记的数据的需求。我们的模型Colbert-XM展示了与现有的最新的多语言检索器相对的性能,这些猎犬在更广泛的数据集中以各种语言进行了培训。进一步的分析表明,我们的模块化方法具有高度的数据效率,有效地适应了分布数据,并大大减少了能耗和碳排放。通过证明其在零拍摄的Sce-Narios中的熟练程度,Colbert-XM标志着向更可持续和包容的检索系统的转变,从而使有效的信息可以使用多种语言获得。我们将公开发布社区的代码和模型。
抽象疾病管理,特别是对于慢性病或老年人,涉及持续监测,生活方式调整和频繁的医疗互动,需要有效的家庭护理解决方案。为了满足这些需求,聊天机器人技术已成为支持患者自主管理健康的有前途的工具。在这种情况下,聊天机器人必须提供及时,准确的信息和持续的善解人意支持,以维持患者的参与度。此外,数据隐私问题需要避免第三方自然语言处理和发电服务。为了满足这些需求,在本文中,我们建议开发聊天机器人,以支持患者管理慢性病,重点关注高血压。特别是,由于隐私要求,我们使用开源大型语言模型来避免专有系统。鉴于他们的性能基于最先进的指标,我们不竞争第三方服务,因此我们结合了检索增强发电(RAG)技术,建立了一个知识库,并通过医学专业人员的投入来提高模型性能。我们评估了七个开源型号,其中包括两个在医疗领域进行的专门培训。我们的结果表明,抹布可显着提高性能,超过没有抹布的专门医疗域模型。这种方法提供了一种有希望的解决方案,用于独立安全地管理慢性条件。
基于关键字的搜索是当今数字库中的标准。然而,像科学知识库中的复杂检索场景一样,需要更复杂的访问路径。尽管每个文档在某种程度上有助于一个领域的知识体系,但关键字之间的外部结构,即它们的可能关系以及每个单个文档中跨越的上下文对于有效检索至关重要。遵循此逻辑,可以将单个文档视为小规模的知识图,图形查询可以提供重点文档检索。我们为生物医学领域实施了一个完全基于图的发现系统,并证明了其过去的好处。不幸的是,基于图的检索方法通常遵循“确切的匹配”范式,该范式严重阻碍了搜索效率,因为确切的匹配结果很难按相关性进行排名。本文扩展了我们现有的发现系统,并贡献了有效的基于图的无监督排名方法,一种新的查询放松范式和本体论重写。这些扩展程序进一步改善了系统,因此由于部分匹配和本体论重写,用户可以以更高的精度和更高的回忆来检索结果。
执行摘要4 1。简介5 1.1背景和讲习班目标5 2。该文档的时间约为6 2.1。工作室活动活动:我们如何组装6 2.2。研讨会活动:我们讨论的内容6 2.3。工作室活动活动:我们如何制作该报告8 3。讨论的未来探索研究主题摘要9 3.1。评估9 3.2。培训,反馈和推理9 3.3。了解和建模用户9 3.4。社会后果9 3.5。个性化10 3.6。降低生成IR 10 3.7的成本。AI代理和信息检索10 3.8。信息访问和发现的基础模型10 4。短期和长期研究主题和建议11 4.1。评估11 4.2。培训,反馈和推理14 4.3。了解和建模用户18 4.4。社会后果20 4.5。个性化22 4.6。可伸缩性和效率24 4.7。AI代理和信息检索27 4.8。信息访问和发现的基础模型30 5。资助机构和研究社区的其他建议31 5.1。评估活动的建议31 5.2。共享计算基础架构和资源的建议33 5.3。资金计划支持合作研究34致谢35审稿人35美国国家科学基金会35参考36 A.附录37 A.1词汇表37 A.2 CCC研讨会参与者和报告贡献者38
高级人工智能技术的出现在蛋白质结构预测方面取得了显着加速。alphafold2是该领域中的开创性方法,它通过利用Evoformer模块从multiple序列比对(MSA)自动提取共进化信息,为预测准确性设定了新的基准测试。但是,诸如Alphafold2之类的结构预测方法的疗效在很大程度上取决于MSA的深度和质量。为了解决这一局限性,我们提出了两个新型模型Aido.ragplm和aido.ragfold,它们是A-e-e-dected蛋白质语言模型和AI-Drigity数字有机体中的概述的模块[1]。aido.ragplm将预训练的蛋白质模型与检索的MSA整合在一起,从而使共同进化信息纳入结构前字典,同时通过大规模预处理补偿了MSA信息不足。我们的方法在困惑,接触预测和适应性预测中超过了单序蛋白语言模型。我们利用aido.ragplm作为蛋白质结构预测的特征提取器,导致aido.ragfold的发展。当有足够的MSA提供时,Aido.Ragfold就可以达到与Alphafold2相当的TM分数,并且最多运行速度长达八倍。在MSA不足的情况下,我们的方法显着优于Al-PhaFold2(∆ TM得分= 0.379、0.116和0.116和0.059,对于0、5和10 MSA序列作为输入)。我们的发现表明aido.ragplm为蛋白质结构预测提供了有效,准确的解决方案。此外,我们使用层次ID生成开发了一种从Uniclust30数据库搜索的MSA检索器,该数据库比传统方法快45至90倍,并用于扩展aido.ragplm的MSA培训集,增长32%。
摘要....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 2
因为聊天机器人旨在由研究人员使用,因此透明度至关重要。在响应用户请求时,LLMS通常包括其自身的内部知识(可能不可靠但难以验证)或完全构成信息。因此,必须清楚地清楚聊天机器人如何形成其响应,特别是LLM如何解释用户请求以及其查询外部API,以便用户可以独立地评估聊天机器人操作的正确性并将其结论链接到数据。我们为原型设计采用的方法如图2;每当聊天机器人启动数据检索或分析过程时,该过程的详细日志就会嵌入对话中,包括所采取的动作序列及其输入和输出。