主编:David Parker 副总裁/执行编辑:Bob Horan 产品开发经理:Ashley Santora 助理编辑:Kelly Loftus 编辑助理:Christine Ietto 媒体项目经理:Denise Vaughn 营销经理:Anne Howard 营销助理:Susan Osterlitz 副总编辑:Renata Butera 项目经理、制作:Renata Butera、Carol Samet 权限项目经理:Charles Morris 高级运营主管:Arnold Vila 运营专家:Michelle Klein 艺术总监:Steve Frim 室内设计:Ken Rosenblatt/Azimuth Interactive, Inc. 封面设计:Steven Frim 封面插图/照片:Robert Harding/Digital Vision/Getty Images, Inc. 插图(内部):Azimuth Interactive, Inc. 图像资源中心主任:Melinda Patelli 权利与许可经理:Zina Arabia 经理: 视觉研究:Beth Brenzel 封面视觉研究与许可经理:Karen Sanatar 图像许可协调员:Angelique Sharps 照片研究员:Diane Austin 构图: Azimuth Interactive, Inc. 印刷商/装订商:Courier/Kendallville 字体:10.5/12.5 Times LT Std
多年来,许多纽约州环境保护部 (NYSDEC) 工作人员与外部组织一起努力制定了这一战略。NYSDEC 工作人员包括主任 Riexinger、局长 Batcheller 和 Farquhar、鸟类部门负责人 John Ozard、栖息地和通道部门负责人 Marcelo del Puerto、野生动物多样性部门负责人 Dan Rosenblatt、区域经理 Wasilco 和 Joule、Heidi Kennedy、Irene Mazzocchi、Paul Novak、Mike Morgan、Jed Hayden、Lisa Masi、Katherine Barnes、Bonnie Parton、Oliver Riley、Matt Palumbo 和 Ashley Meyer。外部组织和工作人员包括纽约奥杜邦协会 (Mike Burger、Andy Hinickle、Jillian Liner)、康奈尔鸟类学实验室 (Ron Rohrbaugh、Sara Barker)、佛蒙特生态系统研究中心 (Roz Renfrew)、美国森林服务局 (Finger Lakes 国家森林公园 - Greg Flood)、纽约州立大学布罗克波特分校 (Greg Lawrence、Chris Norment)、纽约州自然遗产计划 (Matt Schlesinger、Tim Howard)、自然资源保护局 (Kim Farrell、Val Podolec) 和美国鱼类和野生动物管理局 (Scott Lenhart、Chelsea Utter)。感谢所有参与这项工作的人,非常感谢你们的贡献。
机器学习是“一个研究领域,它使计算机能够学习而无需明确地进行学习” [11]。机器学习的起源始于康奈尔大学的心理学家弗兰克·罗森布拉特(Frank Rosenblatt)。基于人类神经系统的机器设计。该机器被称为“ Perceptron”,其目的是识别字母的字母[8]。随着机器学习的领域的增长,可以完成的任务数量也随之增长。例如,对象检测是通过使用机器学习进一步研究,测试和部署的众多任务之一。对象检测是计算机视觉中的视觉识别问题,其目标是在给定图像中找到某些目标类的对象,并为每个对象分配一个相应的类标签。由于近年来基于深度学习的图像分类的成功,它结合了深度学习技术[12]。现在已经解释了机器学习的一些历史,让我们开始研究如何使用它来检测指尖。 创建此机器将是有益的,因为它的模型可以采用并将其实施到不同的应用程序中。 在本文的其余部分中,将说明以下内容:讨论的第一个主题将是其他人在手指检测方面进行的一些先前研究,接下来将提供模型的创建和测试方法,然后将是整个过程的结果。 最后,本文将以结论结束。现在已经解释了机器学习的一些历史,让我们开始研究如何使用它来检测指尖。创建此机器将是有益的,因为它的模型可以采用并将其实施到不同的应用程序中。在本文的其余部分中,将说明以下内容:讨论的第一个主题将是其他人在手指检测方面进行的一些先前研究,接下来将提供模型的创建和测试方法,然后将是整个过程的结果。最后,本文将以结论结束。
董事会成员,其条款将于2024年12月31日到期,MANMIET AHUWALIA,迈阿密Noman Noman Ashraf,医学博士 *医学博士,好莱坞Mehdi Moezi,医学博士,弗莱明岛Zeina Nahleh,医学博士,FACP,FACP,Weston Sushma Nakka,MD,Lakeland *New Paresh Patel,MD,MD,Tallahassee Estelamari Estelamari Rodriguez,Md医学博士Sotomayor,坦帕·温斯顿·坦(Tampa Winston Tan),医学博士,杰克逊维尔董事会成员,其任期为2025年12月31日,锡金德·艾拉瓦迪(Sikander Ailawadhi)医学博士Beach Rogerio Lilenbaum,木星 *New Loretta Loftus,医学博士,坦帕Yan Makeyev,医学博士,橙色公园塞萨尔·佩雷斯,医学博士,迈阿密奥马尔·拉希德,马里兰州,英尺。劳德代尔·乔治·西蒙(Lauderdale George Simon)迈尔斯·乔纳森·扎格(Myers Jonathan Zager),医学博士,坦帕董事会成员,将于2026年12月31日到期,迈克·卡斯尼尔(Mike Cusnir),医学博士迈阿密迪纳·杜纳·杜米尔西·麦克林(M. Mahtani,Do,种植园Rami Manochakian,医学博士,杰克逊维尔·梅里·詹妮弗·马克汉姆(Jacksonville Merry Jennifer Markham) Jason Starr,Do,Gainesville
人工智能 (AI) 有着数十年的悠久传统。1956 年,麦卡锡在达特茅斯会议上首次提出了“人工智能”这个名称,从此开启了这一研究领域的热潮,并一直延续至今 (McCarthy et al., 2006)。人工智能最初的重点是符号模型和推理,随后出现了第一波神经网络 (NN) 和专家系统 (ES) 的浪潮 (Rosenblatt, 1957; Newel and Simon, 1976; Crevier, 1993)。当明斯基和帕普特 (Minsky and Papert, 1969) 证明感知器在学习非线性可分函数(例如异或 (XOR))时存在问题时,该领域遭受了严重挫折。这极大地影响了人工智能在随后几年的发展,尤其是在神经网络领域。然而,在 20 世纪 80 年代,神经网络通过反向传播算法的发明而卷土重来(Rumelhart 等人,1986 年)。后来在 20 世纪 90 年代,关于智能代理的研究引起了广泛的兴趣(Wooldridge 和 Jennings,1995 年),例如探索感知和行为的耦合效应(Wolpert 和 Kawato,1998 年;Emmert-Streib,2003 年)。最后,在 21 世纪初,大数据的出现,导致了神经网络以深度神经网络 (DNN) 的形式再次复兴(Hochreiter 和 Schmidhuber,1997 年;Hinton 等人,2006 年;O'Leary,2013 年;LeCun 等人,2015 年)。这些年来,人工智能在机器人、语音识别、面部识别、医疗保健和金融等许多领域取得了巨大成功(Bahrammirzaee,2010;Brooks,1991;Krizhevsky 等人,2012;Hochreiter 和 Schmidhuber,1997;Thrun,2002;Yu 等人,2018)。重要的是,这些问题并不都属于一个领域,例如计算机科学,而是涉及心理学、神经科学、经济学和医学等多个学科。鉴于人工智能应用的广泛性和所用方法的多样性,毫不奇怪,看似
摘要。如今,基于计算机技术的进步,研究旨在开发新的数据处理方法。一些研究侧重于创造模仿人类生物数据处理机制的新工具。这些研究为人工神经网络的发展铺平了道路,与传统的、更常用的预测分析工具相比,人工神经网络可以被视为一种更优越的预测分析工具。如今,人工神经网络已在生态学、工程学和健康等学科中得到广泛应用。然而,可以说,尽管它们比其他预测分析更具功能性和有效性,但它们在教育研究中的应用却十分有限。本研究旨在通过参考通过人工神经网络分析进行的研究,阐明人工神经网络在教育研究中的功能和作用。关键词:人工神经网络、多层感知器、单层感知器、输入层、隐藏层简介人工神经网络是模拟人类数据处理系统的数据处理系统(Elmas,2003 年,第 22 页)。人工神经网络的概念源于在计算机系统上模仿人脑的运作原理,用定量数据进行计算,并创建生物神经元的数学模型(Efe & Kaynak,2000,第 1 页)。第一个人工神经网络是由神经生理学家 Warren McCulloch 和数学家 Walter Pitts 基于人脑的计算能力创建的(Bishop,2014,第 9 页)。 1958 年 Frank Rosenblatt 开发出感知器这种人工神经网络系统后,人工神经网络的研究开始加速,随后出现了自适应线性元件(自适应线性元件 (Widrow & Hoff, 1960)、Hopfield 网络 (Hopfield, 1982)、Kohonen 网络 (Kohonen, 1982, 1984)、玻尔兹曼机 (Ackley et al., 1985) 和通过反向传播算法学习的多层前馈神经网络 (Rumelhart et al., 1986;引自 Lek & Guegan, 1999, p. 67)。现代人工神经网络研究的重点是开发新的、更有效的学习算法,并创建能够响应随时间变化的模型的网络 (Kriesel, 2007, pp. 21-22)。如前所述,人工神经网络模拟人类大脑中的生物神经元和创建人工神经元的数学模型基于生物模型(Kohli et al.,, 2014, p. 745)。Hanrahan(2011, p. 5)描绘了生物模型的结构,如图1所示;
[1] T. Cui和F. Pillichshammer(2025)。伯恩斯坦近似及以后:通过基本概率理论的证明,元素der Mathematik,被接受,Arxiv:2307.11533。[2] T. Cui,J。Dong,A。Jasra和X. T. Tong(2025)。数值MCMC的收敛速度和近似精度,应用概率的进步,57(1),doi:10.1017/apr.2024.28。[3] T. Cui,G。Ditommaso,R。Scheichl(2024)。多级维度独立于可能性的MCMC,用于大规模反问题,反问题,40,035005。[4] Y. Zhao和T. Cui(2024)。张量训练方法用于状态空间模型中的顺序状态和参数学习,机器学习研究杂志,接受,ARXIV:2301.09891。[5] T. Cui,H。de Sterck,A。D. Gilbert,S。Polishchuk和R. Scheichl(2024)。多层次的蒙特卡洛方法用于随机对流扩散特征值问题,《科学计算杂志》,99(3),1-34。[6] T. Cui,S。Dolgov和R. Scheichl(2024)。使用张量列车进行的深度重要性采样,并适用于先验和后验罕见的事件估计,《 Siam Scientific Computing杂志》,46(1),C1 – C29。[7] T. Cui,S。Dolgov,O。Zahm(2023)。可扩展的有条件深度逆罗森布拉特使用张量列和基于梯度的尺寸降低,计算物理学杂志,485,112103。[8] T. Cui,S。Dolgov(2022)。使用平方逆的Rosenblatt传输,计算数学基础,22(6),1863– 1922年对张量列车的深度组成。[9] T. Cui,X。T。Tong和O. Zahm(2022)。先前的标准化了贝叶斯反问题,逆问题,38(12),124002。[10] T. Cui,X。T. Tong(2022)。统一的绩效分析对信息性的子空间方法,Bernoulli,28(4),2788–2815。[11] O. Zahm,T。Cui,K。Law,Y。Marzouk和A. Spantini(2022)。非线性贝叶斯逆问题的认证维度降低,计算数学,91(336),1789–1835。[12] T. Cui,Z. Wang和Z. Zhang(2022)。通过非线性流变学,计算物理学的通信,ARXIV:2209.02088,一种用于冰川建模的变分神经网络方法。[13] L. Bian,T。Cui,B.T。 Yeo,A。Fornito,A。Razi,J。Keith(2021)。 使用功能性MRI,Neuroimage,244,118635识别大脑状态,过渡和社区。div> [14] T. Cui,O。Zahm(2021)。 无数据的贝叶斯反问题,反问题的无数据信息尺寸减小,37(4),045009。 [15] J. Bardsley,T。Cui(2021)。 基于优化的非线性层次统计反问题的MCMC方法,《不确定性量化》的暹罗/ASA期刊,9(1),29-64。 [16] C. Fox,T。Cui,M。Neumayer(2020)。 随机降低了效率的大都市量的前向模型,并应用于地下流体流量和电容层析成像,《辉煌的地质杂志》,《地貌杂志》,11(1),1-38。 [17] J. Bardsley,T。Cui,Y。Marzouk,Z。Wang(2020)。 [18] R. Brown,J。Bardsley,T。Cui(2020)。 [19] S. Wu,T。Cui,X。Zhang,T。Tian(2020)。[13] L. Bian,T。Cui,B.T。Yeo,A。Fornito,A。Razi,J。Keith(2021)。 使用功能性MRI,Neuroimage,244,118635识别大脑状态,过渡和社区。div> [14] T. Cui,O。Zahm(2021)。 无数据的贝叶斯反问题,反问题的无数据信息尺寸减小,37(4),045009。 [15] J. Bardsley,T。Cui(2021)。 基于优化的非线性层次统计反问题的MCMC方法,《不确定性量化》的暹罗/ASA期刊,9(1),29-64。 [16] C. Fox,T。Cui,M。Neumayer(2020)。 随机降低了效率的大都市量的前向模型,并应用于地下流体流量和电容层析成像,《辉煌的地质杂志》,《地貌杂志》,11(1),1-38。 [17] J. Bardsley,T。Cui,Y。Marzouk,Z。Wang(2020)。 [18] R. Brown,J。Bardsley,T。Cui(2020)。 [19] S. Wu,T。Cui,X。Zhang,T。Tian(2020)。Yeo,A。Fornito,A。Razi,J。Keith(2021)。使用功能性MRI,Neuroimage,244,118635识别大脑状态,过渡和社区。div>[14] T. Cui,O。Zahm(2021)。无数据的贝叶斯反问题,反问题的无数据信息尺寸减小,37(4),045009。[15] J. Bardsley,T。Cui(2021)。基于优化的非线性层次统计反问题的MCMC方法,《不确定性量化》的暹罗/ASA期刊,9(1),29-64。[16] C. Fox,T。Cui,M。Neumayer(2020)。随机降低了效率的大都市量的前向模型,并应用于地下流体流量和电容层析成像,《辉煌的地质杂志》,《地貌杂志》,11(1),1-38。[17] J. Bardsley,T。Cui,Y。Marzouk,Z。Wang(2020)。[18] R. Brown,J。Bardsley,T。Cui(2020)。[19] S. Wu,T。Cui,X。Zhang,T。Tian(2020)。基于功能空间的基于可扩展优化的采样,《暹罗科学计算杂志》,42(2),A1317 – A1347。贝叶斯逆问题中的晶状麦片先验的半变量图超参数估计,逆问题,36(5),055006。一种用于推断遗传调节网络的非线性反向工程方法,PEERJ,8,E9065。[20] T. Cui,C。Fox,C.,M。O'Sullivan(2019)。大规模逆问题的自适应误差模型 - 延迟 - 受众MCMC中降低的模型的随机校正,并应用于多相性逆问题,《工程数值国际杂志》,118(10),578-605。[21] T. Cui,C。Fox,G。Nicholls,M。O'Sullivan(2019)。使用平行马尔可夫链蒙特卡洛来量化地热储层校准中的不确定性,国际不确定性量化杂志,9(3),295–310。[22] S. Thiele,L。Grose,T。Cui,S。Micklethwaite,A。Cruden(2019)。从数字数据中提取高分辨率结构取向:贝叶斯方法,结构地质杂志,122,106–115。[23] C. Reboul,S。Kiesewetter,M。Eager,M。Belousoff,T。Cui,H。DeSterck,D。Elmlund,H。Elmlund(2018)。快速接近原子分辨率单粒子3D重建,简单,结构生物学杂志,204(2),172-181。[24] A. Spantini,T。Cui,K。Willcox,L。Tenorio和Y. Marzouk(2017)。贝叶斯线性反问题的面向目标的最佳近似,《暹罗科学计算杂志》,39(5),S167 – S196。[25] Z. Wang,Y。Marzouk,J。Bardsley,T。Cui和A. Solonen(2017)。贝叶斯的逆问题L 1先验:随机化 - 优化方法,Siam on Scientific Computing杂志,39(5),S140 – S166。
前言 在 1995 年出版的《说话的头脑》一书中,编辑 Peter Baumgartner 和 Sabine Payr 整理了一系列精彩的访谈,采访对象是 20 世纪最杰出的 20 位认知科学家。从这些访谈中,我们了解到其中一些伟大人物之间存在着多么根深蒂固且明显具有争议性的敌意,并展示了人工智能的两个阵营最终分裂是不可避免的。就像两只从未实现的承诺的认知灰烬中重生的凤凰一样,这个两面怪兽将呈现出近乎宗教狂热的色彩和对彼此的蔑视,因为双方都试图为对方在当时被认为是一个新兴领域的不足之处辩解,而这个领域对未来的人工智能大有裨益。尽管以今天的标准来看,1995 年的采访似乎新颖且细致入微,但辩论本身却有着更早的先例,可以追溯到唐纳德·赫布 (Donald Hebb) 等先驱(“一起放电的神经元连接在一起”),以及战前才华横溢的博学者,如冯·诺依曼和图灵本人(图灵测试)——他们都促成了战后马文·明斯基 (Marvin Minsky) 和弗兰克·罗森布拉特 (Frank Rosenblatt)(同一所布朗克斯科学高中的同学)之间著名的辩论。这些争论可以一口气概括为以下几个方面:(i)人工智能和认知科学(将导致深度学习和我们当前的 Chat-GPT)是否应该尝试模拟人类大脑实际的内部神经结构,即“人类学习”源自单一的神经元二元/数字活动模式(其性质严重依赖于强力概念,如局部性、频率和加权强度);或(ii)大脑结构——当时和现在仍然无法被我们完全理解——是否应该基于其知之甚少的神经元结构进行建模,而是基于其计算性能和逻辑、推理、因果关系等能力的结果进行建模。后者这些过程是人类独有的,并且本质上似乎相当类似,因为它们产生了基于符号规则的语言和“人类理解”程序。目前,该领域正在进行单一机制模型与双重机制模型的争论。这些论文概括了我对这个主题的一些想法。以下链接摘自非正式工作论文和短文,代表了我对潜在 AI 到自然语言界面现状的一些想法。最后三篇论文(第三部分),特别是“为什么要移动?”,试图捕捉这个 AI 到自然语言界面关于儿童语法发展阶段的内容。这本非正式电子书分为三部分:第一部分“语言的神经基础”,第二部分“递归语法”,第三部分“儿童语言习得”。*关于这个主题的论文、短文和文章都可以在我的学术网站上找到:https://csun。academia.edu/josephgalasso
1) Markoff J:海量数据塑造了计算的新时代。纽约时报,2009 年。https://www. nytimes.com/2009/12/15/science/15books.html (2022年1月3日阅读覧). 2)美国国家癌症研究所:第四范式:大数据如何改变科学。 2015. https://datascience.cancer.gov/news-events/events/fourth-paradigm-how-big-data-changing-science (2022年1月3日阅读覧). 3) Rosenblatt F:感知器:用于信息存储和组织的概率模型。心理学修订版 1958; 65:386-408。 4) Rumelhart DE, Hinton GE, Williams RJ : Learning representative representative of the CNNs. Nature 1986; 323 : 533-6. 5) Krizhevsky A, Sutskever I, Hinton GE : ImageNet category with deep convolutional neurons. Communications of the ACM 2012; 60 : 84- 90. 6) Gutierrez G : Artificial intelligence in the intensive care unit. Crit Care 2020; 24 : 101. 7) Gulshan V, Peng L, Coram M, et al : Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photos. JAMA 2016; 316: 2402-10. 8) Barbieri C, Molina M, Ponce P 等:一项国际观察性研究表明,人工智能用于临床决策支持可优化血液透析患者的贫血管理。Kid- ney Int 2016 ; 90 : 422-9。9) Jayapandian CP, Chen Y, Janowczyk AR 等:基于深度学习的肾皮质组织结构分割与多种组织学染色的开发和评估。Kid- ney Int 2021 ; 99 : 86-101。10) Tomašev N, Glorot X, Rae JW 等:一种临床适用的持续预测未来急性肾损伤的方法。Nature 2019 ; 572 : 116-9。 11) Connell A,Raine R,Martin P 等:数字化护理路径的实施(第 1 部分):对临床结果和相关医疗保健成本的影响。J Med Internet Res 2019;21:e13147。12) Zhang L,Baldwin I,Zhu G 等:连续性肾脏替代治疗期间回路压力的自动电子监测:技术报告。Crit Care Resusc 2015;17:51-4。13) Kakajiwala A,Jemielita T,Hughes JZ 等:膜压可预测儿科连续性肾脏替代治疗回路的凝血。儿科肾脏病学 2017;32:1251-61。 14) Shah SJ, Katz DH, Selvaraj S 等: Phenomapping for novel category of heart Failure with Reserved Shooting Fraction. Circulation 2015 ; 131 : 269-79. 15) Komaru Y, Yoshida T, Hamasaki Y 等: Hierarchical clustering analysis for predicting 1-year
背景:类脑计算将传统计算技术与受人脑启发的计算和认知思想、原理和模型相结合,以构建智能信息系统,用于我们的日常生活。图像和语音处理、盲信号分离、创造性规划和设计、决策、自适应控制、知识获取和数据库挖掘只是类脑计算应用的一些领域。我们对大脑功能了解得越多,信息系统就越智能。本书还介绍了心智和意识建模的一个主题,以及人工智能领域的其他新理论模型和应用。人脑是一种非常节能的装置。从计算角度来说,它仅需 20 瓦的功率就能每秒执行相当于十亿亿亿亿次浮点运算(1 后面跟着 18 个零)的数学运算。相比之下,世界上最强大的超级计算机之一“橡树岭前沿” (Oak Ridge Frontier) 最近演示了百亿亿次计算能力。然而,要实现这一壮举需要数百万倍的功率,即 20 兆瓦。我和我的同事希望通过大脑来指导开发强大而节能的计算机电路设计。你看,能源效率已经成为阻碍我们制造更强大的计算机芯片的一个主要因素。虽然更小的电子元件已成倍地提高了我们设备的计算能力,但进展却正在放缓。有趣的是,我们对大脑如何运作的看法一直是计算机世界的灵感源泉。为了理解我们是如何得出这种方法的,我们需要简单回顾一下计算的历史。人脑是宇宙中最复杂的物体之一。它能够在不断变化的环境中执行高级认知任务,例如抽象、概括、预测、决策、识别和导航。大脑这种较高的认知能力得益于它的功耗非常低,只有20W。大脑能效高的原因主要有两点:一是信息交换和处理是事件驱动的;因此,尖峰能量仅在需要的时间和地点被消耗。其次,神经元和突触位于同一个神经网络中,高度互联,每个神经元平均与104个其他神经元相连。神经元/突触共位意味着数据处理(由突触兴奋和神经元放电组成)和记忆(由突触权重和神经元阈值组成)在大脑内共享同一位置。许多研究工作旨在模仿人类大脑的计算类型,以实现非凡的能源效率。这是神经形态工程的目标,其中,脉冲神经网络(SNN)是利用人工神经元和突触开发出来的。 SNN 通常采用与 Rosenblatt 和 Minsky 开创的传统感知器网络相同的全连接 (FC) 架构。然而,在 SNN 中,神经元和突触通常表现出对施加的尖峰的时间依赖性响应,例如神经元内的整合和发射以及跨突触的兴奋性突触后电流 (EPSC)。这与用于计算机视觉和语音识别的人工智能 (AI) 加速器中的传统人工神经网络 (ANN) 形成对比,其中信息是同步的并且基于信号幅度而不是时间。大多数 SNN 通常依赖于互补金属氧化物半导体 (CMOS) 技术,具有两个显著的关键优势:首先,CMOS 技术在半导体行业生态系统中广泛可用,包括设计、制造和鉴定,为基于 CMOS 的神经形态工程成为成熟主题创造了条件。其次,CMOS晶体管可以按照摩尔定律小型化,其中减小