机器学习是“一个研究领域,它使计算机能够学习而无需明确地进行学习” [11]。机器学习的起源始于康奈尔大学的心理学家弗兰克·罗森布拉特(Frank Rosenblatt)。基于人类神经系统的机器设计。该机器被称为“ Perceptron”,其目的是识别字母的字母[8]。随着机器学习的领域的增长,可以完成的任务数量也随之增长。例如,对象检测是通过使用机器学习进一步研究,测试和部署的众多任务之一。对象检测是计算机视觉中的视觉识别问题,其目标是在给定图像中找到某些目标类的对象,并为每个对象分配一个相应的类标签。由于近年来基于深度学习的图像分类的成功,它结合了深度学习技术[12]。现在已经解释了机器学习的一些历史,让我们开始研究如何使用它来检测指尖。 创建此机器将是有益的,因为它的模型可以采用并将其实施到不同的应用程序中。 在本文的其余部分中,将说明以下内容:讨论的第一个主题将是其他人在手指检测方面进行的一些先前研究,接下来将提供模型的创建和测试方法,然后将是整个过程的结果。 最后,本文将以结论结束。现在已经解释了机器学习的一些历史,让我们开始研究如何使用它来检测指尖。创建此机器将是有益的,因为它的模型可以采用并将其实施到不同的应用程序中。在本文的其余部分中,将说明以下内容:讨论的第一个主题将是其他人在手指检测方面进行的一些先前研究,接下来将提供模型的创建和测试方法,然后将是整个过程的结果。最后,本文将以结论结束。
主要关键词