Hatchard等。 将这些模型组合在一起,以模拟在过热条件下的完整细胞。 [9]该领域的新出版物[10-14]通常是指这些模型,并将其扩展以涵盖更广泛的应用程序。 这项工作的目的是为由于热失控而对蝙蝠的安全风险进行快速评估,该风险可以应用于高度灵活的电池生产,以用于各种类型,尺寸和形状的细胞。 [15]因此,在这项工作中开发了用于锂离子电池安全性评估的数值模型。 这项工作中提出的化学模型可以仔细观察热失控期间的分解反应。 这允许根据电池电池组成评估生成的热量和气体,这是有用的尺寸,例如安全通风孔和热屏障。 开发的模型侧重于热滥用条件下的完整细胞模拟。 因此,化学模型与热模拟相结合,以获得温度曲线并从模拟结果中释放总热量。 进行验证,建造了用于热滥用电池的测试钻机。 袋细胞通过以恒定的速度加热来将它们带到热失控中。 为了验证模拟框架,分析了热失控过程和相应气体释放期间温度预纤维的测量。Hatchard等。将这些模型组合在一起,以模拟在过热条件下的完整细胞。[9]该领域的新出版物[10-14]通常是指这些模型,并将其扩展以涵盖更广泛的应用程序。这项工作的目的是为由于热失控而对蝙蝠的安全风险进行快速评估,该风险可以应用于高度灵活的电池生产,以用于各种类型,尺寸和形状的细胞。[15]因此,在这项工作中开发了用于锂离子电池安全性评估的数值模型。这项工作中提出的化学模型可以仔细观察热失控期间的分解反应。这允许根据电池电池组成评估生成的热量和气体,这是有用的尺寸,例如安全通风孔和热屏障。开发的模型侧重于热滥用条件下的完整细胞模拟。因此,化学模型与热模拟相结合,以获得温度曲线并从模拟结果中释放总热量。进行验证,建造了用于热滥用电池的测试钻机。袋细胞通过以恒定的速度加热来将它们带到热失控中。为了验证模拟框架,分析了热失控过程和相应气体释放期间温度预纤维的测量。
在六型21700锂离子细胞组成的小模块上进行了六个热失去传播测试,在六边形构型中,相邻细胞之间的间距为3 mm。使用直径为8 mm的指甲穿过细胞的正末端,将一个模块中心的一个单元触发到热失控中。在一半的测试中,使用35 mm的穿透深度在触发细胞中启动侧壁破裂。对于另一半测试,在触发细胞中未使用10 mM穿透深度在触发细胞中启动侧壁破裂。在触发细胞经历侧壁破裂的所有测试中,模块中其余六个细胞都有热失去的传播。在所有触发细胞没有侧壁破裂的测试中,模块中的任何其他细胞都没有热失去繁殖。这些结果是通过相对于名义衰竭的侧壁破裂失败的方向性和热传递的幅度来解释的。这些结果强调了当电池模块中发生侧壁破裂故障并强调方法减轻电池系统故障的重要性时,热失去传播的倾向增加了。
摘要:设计电动汽车的电池时,必须考虑不同的参数,以从机械和热的观点中获得电池/模块/电池的最安全排列。在这项研究中,分析锂离子细胞的热失去繁殖机制是在电池组中的电池组中的布置的函数,以防发生热失控的电池组。目的是使用对属于燃烧车辆的电池的电池的结构和化学成分进行微观分析,以确定电池组中哪种单元/模块排列最关键。及其最终条件与相同类型的新细胞的状况进行了比较。以这种方式,比较了热失控后阴极,阳极和分离器的结构和化学组成。进行了这项研究以获取信息,以了解锂离子细胞的机械性能及其在热失控加热后的行为,从而导致火力传播。通过进行的分析,得出结论,放置在垂直排列的细胞的行为比水平排列中的细胞差。关于电池的安全性,这项研究的结果将使我们能够确定电池组中电池组的哪种布置和结构,并且由于热衰竭,电池组中的单元格更安全。
锂离子电池由于可能发生失控传播而容易产生危害。在电池产品开发和随后的设计验证和安全认证的安全性测试中,热失失的发作由各种测试方法(例如指甲渗透,热坡道或外部短路)触发。这种故障引发方法会影响热量贡献的量和气体世代的组成。本研究比较了两种这样的触发方法,即外部加热和使用热激活的内部短路装置(ISCD)。在18650年的单细胞水平以及多个细胞配置水平下,在18650年的圆柱细胞中,在实验中研究了触发方法对总热量产生的影响。观察到失败的严重程度对于在单细胞水平下具有ISCD的细胞的严重程度较差,而在多个细胞配置水平上观察到了相反的结果。进行了初步的数值分析,以更好地了解相对于热失控的触发方法和传热条件的电池安全性能。©2024作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/1945-7111/ad3aae]
•目标是估计墙壁上的对流传热系数。•均匀排气气体流入速度(V JET)和温度(T射流)的2-D可压缩流量模拟,且温度(t射流)具有恒定温度壁条件1的狭窄通道。•K -W剪切压力运输(SST)兰斯2型模型2。•用DNS结果验证了模拟3。•热失控模型LIM1TR(使用1-D热失控的锂离子建模)用于研究由于排气气体4引起的液化液中热失控启动的潜力。
日益增加的锂离子电池需要进一步的安全测试和评估。最重要的是要理解不同的测试条件的影响,尤其是用于验证计算机模型。文献中有大量来自热失控测试的数据,但很少有来自大型测试系列的数据。评估不同测试条件的影响的缺失系统方法意味着在比较测试结果时的不确定性。此外,细胞发育中的快速速度(包括对较大细胞的使用越来越多)需要验证先前发表的结果。这项工作介绍了来自37个测试的热失控数据,对一种大格式棱镜锂离子细胞(157 AH)。测试是在封闭压力容器中进行的,该封闭压力容器以及惰性气氛以及排气收集器引擎盖下方的开放设置。此外,采用了六种不同的热失控触发方法以及四种不同的电荷状态。重点放在产生的气体上,这是安全评估的关键方面。将结果与文献数据进行了比较,并提出了一种新的修改方法来计算封闭压力容器中的特征发泄速率。可以得出结论,触发方法会影响电池的气体产量,质量损失和最高温度,并影响其电荷状态。大细胞格式可能会影响特定的总气体产生并增强不同触发方法的影响,但对其他评估参数的影响很小。由于测试设置的不同,在测试结果中没有明显差异,除了由于环境大气中释放的气体的潜在燃烧而导致的差异。
对锂离子电池中温度和压力的实时监测提供了对几种与热失控相关的几种故障机制的全面洞察力。这些特征是温度升高,会触发热产生的分解过程以及迅速降低电池的易燃气体的释放。这项研究提出了一种新方法,该方法是针对首次设施的高容量21700型元素细胞中内部温度和气压的同时实时监测。这包括评估热失控事件的严重程度。该方法使用具有集成热电偶和压力传感器的定制传感系统。研究了仪器细胞的性能并验证传感器功能后,通过外部加热触发的细胞衰竭进一步研究了热失控特性。结果突出了细胞内部气压的积累,内部细胞温度的升高以及细胞衰竭阶段的细胞电压变化:预处理,软孔和火焰产生。这项研究的基础是制定锂离子电池系统中针对安全危害的早期检测或缓解策略。此外,未衡量数据集的可用性支持创建数学模型,以优化电池性能,安全性和寿命。
锂离子电池的热失控可能涉及各种类型的故障机制,每种机制都有其独特的特征。使用分数热失控量热法和高速射线照相术,对三种不同几何形状的圆柱形电池(18650、21700 和 D 型电池)对不同滥用机制(热滥用、内部短路和钉子刺穿)的响应进行了量化和统计检查。确定了电池几何形状与其热行为之间的相关性,例如在钉子刺穿过程中,随着电池直径的增加,电池每安培小时的热量输出(kJ Ah − 1 )会增加。高速射线照相术显示,与热滥用或内部短路滥用相比,钉子刺穿时电池内的热失控传播速率通常最高,其中随着直径的增加,传播速率相对增加。对于在相同条件下测试的特定电池模型,观察到热量输出分布,随着质量喷射的增加,热量输出呈增加的趋势。最后,使用嵌入在穿透钉中的热电偶进行内部温度测量被证明是不可靠的,因此表明在温度快速变化的情况下使用热电偶时需要小心。本文中使用的所有数据均通过 NREL 和 NASA 电池故障数据库开放获取。© 2022 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款分发(CC BY,http://creativecommons.org/licenses/ by/4.0/ ),允许在任何媒体中不受限制地重复使用作品,前提是正确引用原始作品。[DOI:10.1149/ 1945-7111/ac4fef ]
摘要:在热失控(TR)期间,锂离子电池(LIBS)产生大量气体,当电池故障并随后燃烧或爆炸时,电动汽车和电化学能源存储系统可能会造成不可想象的灾难。因此,要系统地分析具有Lifepo 4(LFP)和Lini X Co Y Mn Z O 2(NCM)阴极材料的常用LIB的热后失控特性,并在电池热逃亡过程中最大程度地发挥了原位气体,我们在电池热失控过程中最大程度地发电了实验,则使用Adiabatic Explotic爆炸室(AEC)(AEC)测试libes libs libs libs libs libs libs libs。此外,我们对热失控过程中产生的气体成分进行了原位分析。我们的研究发现表明,在热失控之后,NCM电池比LFP电池产生的气体更多。基于电池气体的产生,TR造成的伤害程度可以排名如下:NCM9 0.5 0.5> NCM811> NCM622> NCM523> NCM523> LFP。NCM和LFP电池的热失控期间的主要气体组件包括H 2,CO,CO 2,C 2 H 4和CH 4。LFP电池产生的气体包含h 2的高比例。与NCM电池产生的混合气体相比,LFP电池在TR期间产生的LFP电池产生的气体的高浓度较低。因此,就电池TR气体组成而言,危险水平的顺序为LFP> NCM811> NCM622> NCM523> NCM9> NCM9 0.5 0.5 0.5 0.5 0.5。尽管LFP电池非常安全,但我们的研究结果再次引起了研究人员对LFP电池的关注。尽管实验结果表明,在大规模电池热失控事件中,LFP电池具有较高的热稳定性和较低的气体产生,考虑到气体产生成分和热失控产品,但LFP电池的热失控风险可能高于NCM电池。这些气体还可以用作电池热失控警告的检测信号,为未来电化学能源存储和可再生能源行业的未来开发提供了警告。
电池安全设计非常重要,要考虑从单个锂离子电池到宏观系统的水平。在宏观层面上,一个单元格中的故障会导致热失控的传播,并迅速将整个电池组放在火上。可能影响传播结果的因素,例如细胞模型/化学和电连接,在这里使用测量组合进行了研究。进行了几项滥用测试,结合了两个不同的细胞模型(Molicel P42A和LG M50,均为21700)和平行连接(每次配置16个测试)。总体而言,从32次进行的测试中测量了56%的传播结果,最低温度为150℃以启动传播,并且在123 s中发生了最快的传播。温度测量在串联连接的细胞中较高,引发了对细胞化学的讨论以及对此作用的内部耐药性。串联和平行连接中热失控期间电流流的差异,以及如何进一步讨论这会影响温度演化。X射线射线照相的时空映射使我们得出电池内部热失控演变的速度,并表明串联连接的电池,尤其是P42A的发生速度更快。进一步观察到,仅在P42AS中仅在相应的指甲穿过的细胞中发生了跨侧壁行为,例如温度诱导的漏洞和压力诱导的破裂。