随着电力产生的当前排放输出,多个利益相关者试图脱碳和改变当前的能源电网技术和能源发电机。为了支持这种过渡,本文分析了当前网格尺度级别存储系统的技术能力,并提供了优先级排序电极材料质量的过程。在具体上,本文探讨了利用面向能网格的属性的钠离子电池的阳极和阴极材料。本文提出了加权级别系统,考虑了可逆能力,能量密度,循环能力和物质丰度的因素。本文旨在通过将各种电极材料的上下文化各种电极材料来帮助那些在未来的网格级电池中研究未来电极材料的人。本文还试图提供一种比较多种电极材料以推荐特定研发领域的有效方法。
1 上海大学理学院数学系,上海 200444;xuyaochen@shu.edu.cn 2 上海大学生命科学学院,上海 200444;mql1117@shu.edu.cn (QM);ssdrg@shu.edu.cn (JR) 3 上海海事大学信息工程学院,上海 201306;lchen@shmtu.edu.cn 4 上海交通大学医学院 & 中国科学院上海生命科学研究院干细胞生物学重点实验室,上海 200030;gw_1992@sjtu.edu.cn 5 广东农商职业技术学院计算机科学系,广州 510507; kyfeng@gdaib.edu.cn 6 中国科学院上海营养与健康研究所,中国科学院生物医学大数据中心,中国科学院计算生物学重点实验室,上海 200031; huangtao@sibs.ac.cn 7 中国科学院上海营养与健康研究所,中国科学院组织微环境与肿瘤重点实验室,中国科学院大学,上海 200031 * 通讯地址:zbzeng@shu.edu.cn(ZZ);caiyudong@staff.shu.edu.cn(YC);电话:+86-21-66136132(YC)† 这些作者对这项工作做出了同等贡献。
硬碳是钠离子电池(SIB)最广泛的阳极材料;然而,它们存在一些局限性,例如稳定性低、倍率性能差和初始库仑效率(iCE)低。在此,使用短链有机分子:3-巯基丙酸(MPA)、1,2-乙二硫醇(EDT)和草酸(OxA)在室温下进行简单、快速且低成本的表面处理,已应用于硬碳(C1400)。用含硫分子(MPA 或 EDT)处理的碳表现出更高的容量(在 C/10 下第 100 次循环后容量增强 12%,在 1C 下容量增强 18% 与 C1400 相比)。这些配体的引入会改善微孔堵塞,有助于 Na 离子的可逆插入。此外,原位X射线光电子能谱(XPS)分析表明,硫醇官能团促进了有利的NaF和富含Na2O的固体电解质的形成
由于钠资源丰富,开发高性能电极材料对于 SIB 技术的进步至关重要。1 – 11 钠过渡金属氧化物、12 – 15 多聚阴离子化合物 16 – 18 和普鲁士蓝类似物 (PBA) 19 – 28 被广泛研究用作 SIB 的正极材料。PBA 的通式为 Na x M [Fe(CN) 6 ] y $ n H 2 O(M = Mn、Fe、Co、Ni、Cu 等),由于其理论容量高(高达 170 mA hg 1,存储两个 Na +)、成本低、易于合成以及开放的框架结构具有快速 Na + 插入/脱出的优势,而引起了广泛关注。在各种PBA中,亚铁氰化锰钠 NaxMn[Fe(CN)6]y$nH2O(简称PBM)被认为是最有前途的SIBs PBA正极,由于其较高的工作电压和较大的容量,其能量密度较高。29 – 34此外,Mn元素在地球上储量丰富,对环境无害。然而,使用传统合成路线制备的NaxMn[Fe(CN)6]y化合物,即通过Mn2+和[Fe(CN)6]4的简单共沉淀反应
更广泛的背景地球的锂储量既有限制和分布不均,在满足全球电气化驱动的不断增长的需求方面提出了重大挑战。鉴于锂离子电池(LIB)的局限性,探索替代电池技术已经变得至关重要。钠离子电池(SIBS)代表了一种有希望的替代方案,由于丰富的钠资源及其低成本而引起了对储能系统和低速电动汽车应用的关注。含钠的过渡金属分层氧化物,普鲁士蓝色类似物和聚苯二醇化合物是SIBS的阴极材料的主要类别。中,具有稳健且稳定的P – O共价键具有固有的安全性,高氧化还原电位以及化学和热稳定性,具有稳定和稳定的Polyanion型阴极。然而,[PO 4]的重3D框架和绝缘特性导致容量递送有限(O 110 mA H G 1),低电子电导率和缓慢的反应动力学,这不可避免地导致电化学性能差。结果,具有高容量,循环寿命和快速反应动力学的高级阴极材料的发展具有重要意义,但它仍然是一个巨大的挑战。在这里,设计和优化了嵌入多孔碳框架中的集成聚苯式氧化物阴极,以增强Na-ion储存性能,该储存性能远远超过了NA 3 V 2(PO 4)3(PO 4)3(PO 4)3和出色的快速充电能力的理论能力,并在半层和AH级别的袋中的较长的循环寿命以及较长的循环寿命。此外,我们通过结合先进的表征技术和理论计算,例如原位X射线衍射,球形像差校正的透射电子显微镜技术,X射线吸收接近边缘结构,密度的功能理论理论计算,和comsol ysol ysimssics yourculation columpulations offeculation和comsol ysimiss,我们 揭示了这种集成阴极的自发激活和传输机制。 这项工作表明,集成阴极中的协同作用可以推动高级阴极材料的开发,以进行高能密度,快速充电和长寿命钠离子电池。揭示了这种集成阴极的自发激活和传输机制。 这项工作表明,集成阴极中的协同作用可以推动高级阴极材料的开发,以进行高能密度,快速充电和长寿命钠离子电池。揭示了这种集成阴极的自发激活和传输机制。这项工作表明,集成阴极中的协同作用可以推动高级阴极材料的开发,以进行高能密度,快速充电和长寿命钠离子电池。
钠离子电池(SIB)的O3型层状氧化物阴极被认为是完全满足未来实际应用需求的最有前途的系统之一。然而,在多个方面的致命问题,例如空气稳定性差,不可逆的复杂多相进化,较低的骑自行车寿命和差的工业可行性限制了其商业化的发展。在这里,稳定的无共欧3型nani 0.4 cu 0.05 mg 0.05 mn 0.4 ti 0.4 ti 0.1 o 2具有大规模生产的阴极材料可以解决这些问题的实际SIB。由于多元素化学替代策略的协同贡献,这种新颖的阴极不仅显示出良好的空气稳定性和热稳定性以及简单的相位转换过程,而且还可以在半电池和全电池系统中提供出色的电池性能。同时,利用各种高级表征技术来准确破译晶体形成过程,原子排列,结构演化和固有的效果机制。令人惊讶的是,除了限制了不利的多相转化和增强空气稳定性外,精确的多元素化学替代工程还显示出固定的影响,以减轻晶格菌株的高结构可逆性,并扩大了合理的层间间隔,从而增强了NA + NA + NA + NA + DII效率,从而实现了出色的全面效果。总体而言,这项研究探讨了多元素化学替代策略的基本科学理解,并为增加商业化的实用性开辟了新的领域。
附件 Posh Electric 1 Posh Electric 旨在测试 1 兆瓦时 (MWh) SIB ESS,以管理太阳能间歇性。SIB ESS 还可以通过在非高峰时段储存电力并在高峰需求时释放电力来实现电力需求的转移。 2 由于新加坡尚未部署 SIB,因此试验将评估电池在当地气候下的性能。 Posh Electric 还将开发一种 SIB ESS,该 ESS 将配备液体冷却热管理系统,并通过国际认可标准认证。试验将收集有关 SIB ESS 的消防安全数据。 VFlowTech 3 VFlowTech 的项目将分两个阶段进行。第一阶段涉及可行性研究,包括研究地下 ESS 的消防安全措施。第二阶段将在获得监管部门批准后开发地下基础设施和 ESS。 4 该项目还将测试混合电池系统、1 MW/1MWh LIB 和 0.3 MW/1.5 MWh 钒液流电池 (VFB) 存储系统的使用情况。5 LIB 和 VFB 各有优势。LIB 具有高能量密度,而 VFB 适合长时间存储并且火灾风险较低。混合系统提供了集成解决方案的潜力,使用 LIB 提供快速响应辅助服务,使用 VFB 提供扩展备用存储。
摘要:硬碳被广泛认为是钠离子电池(SIB)最有前途的阳极材料。硬碳是一种不可塑化的碳,其特征是涡轮层结构,其碳层堆叠量无序,每个碳层都由几个纳米尺寸的石墨烯层组成。即使在2500°C以上的温度下也很难将其石墨。这种独特的结构,结合其低成本,高电导率,低工作电压和高容量,使硬碳可以实现出色的钠离子存储性能。这些特征使其成为商业上最可行的阳极材料。最近的研究还积极探索了生物质而不是高成本无机材料的使用,以降低生产成本,最大程度地减少生物质焚烧中的污染,并减少每年产生的大量生物废物。这项研究研究了源自木质素的硬碳阳极的性能,商业石墨作为对照。X射线衍射(XRD),拉曼光谱,扫描电子显微镜(SEM),透射电子显微镜(TEM)和X射线光电子光谱(XPS)用于分析其晶体学结构,显微结构,显微结构和表面元素组成。电化学性能使用由EC/DEC/DEC(1:1 v/v)组成的电解质(1:1:1 v/v)在DEGDME中为5 wt%FEC和1M NAPF 6。通过在不同电解质条件下比较硬碳和石墨的电化学特性,本研究证明了硬碳作为钠离子电池应用的有希望的阳极材料的潜力。
最近,将高熵引入各种用于不同应用的材料引起了研究人员的兴趣越来越大,并促进了一系列单相多层(等极)材料的快速发展。[1-4]在无序的多组分系统中,大型构型熵被认为可以稳定晶体结构,从而传递高渗透效果(HE)效应,即,熵驱动的施加效果以及相关的“鸡尾酒”效应由阳离子混合以及化学和结构多样性产生。[1,4,5] Within the past few years, a large number of high-entropy materials (HEMs), represented first by high-entropy alloys (HEAs) [1,5–8] and later by high- entropy oxides (HEOs), [3,9–13] have been utilized in a broad range of applications, including environmental protection, elec- trochemical energy storage, and thermo- electric and catalytic applications.在电池材料中,最近的几份报告表明,高熵的引入可以大大改善循环性能,例如,在HEO和高渗透氧气中(HEOFS)。[9,10,14–24] In a previous study by our group, rock-salt (Co 0.2 Cu 0.2 Mg 0.2 Ni 0.2 Zn 0.2 )O was proposed as a promising anode material for lithium-ion batteries (LIBs), with a unique entropy- stabilized Li-storage mechanism, guaranteeing the reversible conversion reaction and leading to improved cycling stability and Coulombic efficiency.[25,26]另一个针对电化学应用的限制是,据报道,HEO在电化学循环期间会经历不利的相位,这可以使其成为[9]此外,HU和同事在层状O3型HEO上报道了钠离子电池(SIBS)的互嵌型阴极[10],表现出良好的长期可环性和速率性能,并促进宿主矩阵的熵稳定。然而,高注册材料的缺点是它们的制备通常涉及具有高能量成本的程序,例如(高能量)球磨碎或高温处理(> 900°C),并且可以容易容易出现相位分离(例如,对于多物质纳米属粒子)。
先进锂离子电池和技术的开发通常解决以下四个目标之一:1)创造更高的体积能量密度和/或比能量/功率,2)赋予本质上更安全的化学性质,3)实现更快的充电速度,和4)使用价格较低但性能具有竞争力/接近竞争力的电池。当然,其他因素也会发挥作用,这取决于目标市场类型和全球供应的可用性;然而,为了广泛采用,上述要点/标准仍然很重要。锂离子在商业上已在通信和运输 (EV) 应用行业中根深蒂固。如今,轻微的迭代(主要是电解质定义的)正在逐步提高安全性、成本和循环或日历寿命。最后一点,日历寿命,是能量密度极高的锂离子电池经常被忽视的一点,因为它们在较高电荷(OCV 条件)和高温下具有反应性。虽然循环寿命与容量/能量性能下降之间存在争议,但重新利用电池本身或在电池寿命结束时回收内部化学成分的尝试在该领域已大大增加。希望在回收循环中也能考虑能源中性过程。尽管如此,能源存储领域相当大,这一追求取决于推动该领域朝着许多方向之一迈进,朝着更崇高的目标迈进。因此,下一代电池和技术的追求必须更深入地研究新的和新颖的化学和电化学,以创造一个中性、无碳环境的世界,一个仅靠太阳能和风能等可再生能源就能满足能源需求的世界。因此,电力和化学在我们这个世界中的应用是 21 世纪的杰作。钠离子电池 (SIB) 进入电池领域让我们认识到预知由锂离子衍生的非水 (电) 化学知识的价值,这可以加快研究方向并缩短开发时间。在过去 10 年中,有关 SIB 的出版物数量大幅增长,这确实代表了一种“超越锂离子”的电池系统方法;然而,这种方法的固有能量密度可能较低。接近 250 Wh/kg 或相当于当今市场上最好的锂离子电池的 SIB 能量密度尚未得到证实/发现。然而,与锂离子相比,电池组建模确实表明生产和原材料提取成本更低,以及材料加工所需的能量更低(以成本/kWh 计算)。如果 SIB 的成本低于石墨/LFP (LiFePO 4 ),同时具有相同的能量密度、寿命、性能和安全性,那将会很有趣,而且肯定具有竞争力。在纸面上这很容易陈述,但挑战在于在现场展示这种比较。我们期待继续开发新的 SIB 阴极和阳极材料的相空间,新的电解质、盐和其他 SIB 技术和特性将引起人们对这个快速发展领域的兴趣。