摘要。罗彻斯特大学 (UR) 的量子光学/量子信息和纳米光学教育实验室设施 (QNOL) 位于光学研究所的三个房间内,总面积为 587 平方英尺。15 年来,它每年用于教授 4 学分的 QNOL 课程。准备了四个教学实验室,用于产生和表征纠缠和单个(反聚束)光子,展示量子力学定律:(1) 纠缠和贝尔不等式,(2) 单光子干涉(杨氏双缝实验和马赫-曾德干涉仪),(3) 单光子源 I:单个纳米发射器的共焦荧光显微镜,以及 (4) 单光子源 II:汉伯里布朗和特威斯装置,荧光反聚束。此外,基于 QNOL,开发了 1.5 到 3 小时的坚固量子“迷你实验室”,并引入必修课程,以便 UR 的所有光学专业学生都拥有使用量子实验室的经验。门罗社区学院 (MCC) 的学生参加了 UR 的两个迷你实验室。自 2006 年到 2022 年春季,共有约 850 名学生使用实验室提交实验报告(包括 144 名 MCC 学生),超过 250 名学生使用它们进行实验室演示。此外,UR 新生研究项目已成为该设施中一项非常重要的教育活动。所有开发的材料和学生报告均可在 http://www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab/ 获得。我们介绍了坚固耐用、普遍可及的实验,这些实验可以引入单独的高级课程或有大量学生的课程。讨论了评估方法、学生知识评估以及他们对量子信息职业的态度。© 2022 光学仪器工程师协会 (SPIE) [DOI: 10.1117/1.OE.61.8.081811]
背景:这项研究表明糖尿病患者青光眼患病率。这项横截面调查估计存在青光眼及其在2型糖尿病的患者中访问了巴基斯坦拉合尔的三级护理医院的患者。方法:基于医院的横断面研究是在巴基斯坦拉合尔第三医院的眼科部门进行的。根据每位患者事先同意后的纳入标准,总共有62名拉合尔医院参加眼睛OPD的糖尿病患者。然后,一位眼科医生全面检查了所有患者的两只眼睛,是否存在青光眼的存在,包括通过Applanation Tonometry对IOP进行测量。还为每位患者进行了立体缝隙检查的视盘检查。青光眼定义为IOP> 21mmHg,杯 - 盘比> 0.03,具有苍白的神经肌曲线框。结果:总共62名糖尿病患者参加了这项研究,其中30例是男性,而女性为32名。参与者的平均年龄为56.04±12.09。具有青光眼的糖尿病女性的平均年龄为58.25±9.94,男性平均年龄为58.36±11.12。所有患者的种族都是旁遮普人,他们的饮食既含有蔬菜和肉类。62例患者中有10名(16%)具有中等的社会经济状况,而62例(84%)中有52名社会经济地位差。观察遗传特征,有4例患者(6.45%)报告了青光眼的阳性家族史。只有1名患者以前对青光眼与眼睛之间的关系有所了解。结论:在参观眼科部门的62名糖尿病患者中,有32.25%的患有青光眼。常规青光眼筛查糖尿病性视网膜病变会导致可控制的青光眼病例。
缩写:同意,对指南研究与评估的评估; AIT,过敏原免疫疗法; APC,抗原呈递细胞;芳香,过敏性鼻炎及其对哮喘的影响; Breg,调节B细胞; CCL,趋化因子配体;配偶,报告试验的合并标准; Covid-19,2019年冠状病毒病; DBPC,双盲,安慰剂控制; DC,树突状细胞; DCREG,调节树突状细胞; Eaaci,欧洲过敏和临床免疫学学院; EBM,循证医学; EMA,欧洲药品局;欧盟,欧盟; Fab,碎片抗原结合;吉娜(Gina),哮喘的全球倡议;等级,建议的评分,评估,发展和评估; HDM,房屋尘螨; ICER,增量成本效益比; IFN-y,干扰素 - 伽马; IG,免疫球蛋白; il,白介素; ILC,先天淋巴样细胞; ITREG,诱导的调节T细胞; MPL,单磷酸脂质; NAEPP,国家哮喘教育和预防计划; NPP,名为患者产品; NTREG,自然调节T细胞; PDG2,Prostaglandin D2; PLGA,聚乳糖 - 乙醇酸; Qalys,质量调整后的生活年; SARS-COV-2,严重的急性呼吸道综合征冠状病毒2; Scit,皮下AIT;缝隙,舌下AIT; T2,类型2; TFR,Foxp3 + -t卵泡调节细胞; TGF-ß,转化生长因子β; T,T-Helper; TLR,Toll样受体; Treg,调节T细胞; TSLP,胸腺基质淋巴细胞增多素; VAS,视觉模拟量表; VIT,毒液免疫疗法; VLP,类似病毒的颗粒; WAO,世界过敏组织;谁,世界卫生组织。
本综述研究了操纵微生物组以增强食物过敏的口服耐受性的潜力,重点是食品过敏原特异性免疫疗法(FA-AIT)和使用佐剂,并具有明显的强调益生菌。fa-at,包括口服(OIT),议立(缝隙)和表皮(表位)免疫疗法,在使患者脱敏并实现持续的无反应性(SU)方面表现出了效率。但是,FA-AIT的长期有效性和安全性仍在研究中。益生菌,尤其是乳杆菌菌株,通过促进调节性T细胞(Tregs)和调节细胞因子促纤维来增强免疫耐受性至关重要。这些益生菌可以诱导半成熟的树突状细胞,增强CD40表达,抑制IL-4和IL-5,并促进IL-10和TGF-β,从而有助于粘膜防御和免疫学耐受性。将益生菌与FA-AIT相结合的临床试验表明,食品过敏患者的脱敏率和免疫耐受性提高了。例如,与安慰剂组相比,乳腺乳杆菌与花生OIT的组合导致SU的速率明显更高,以及明显的免疫变化,例如花生特异性IgE和IgG4水平的降低。审查还探索了FA-AIT中的其他辅助药物,例如生物药物,这些辅助药物针对特定的免疫途径以改善治疗结果。此外,讨论了纳米颗粒和草药疗法(例如食物过敏草药2(FAHF-2)),以增强过敏原递送和免疫原性,减少不良事件并改善脱敏化的潜力。总而言之,将益生菌和其他佐剂整合到FA-AIT方案中可能会显着提高FA-AIT的安全性和效率,从而导致更好的患者结果和生活质量。
分子过程的相干控制源于通向同一最终状态的多种途径 1、2 之间的干涉,通常是通过激光照射引起的。最近的理论研究表明,类似的过程可以出现在经典力学的某些场景中 3、4,并且这种控制可以在经典极限下持续存在 5。基于非线性响应和通过海森堡表示观察干涉的考虑 6、7 表明,当控制在经典极限下存活时,它之所以如此,是因为对量子动力学有贡献的干涉项是由外部驱动的,即与外部激光场的振幅成比例。从这个意义上说,量子干涉贡献在质上与双缝实验等中的贡献不同。负责量子控制的量子干涉现象存在非零经典极限的可能性很大,需要仔细探索。在本文中,我们通过计算研究了在预计可通过实验实现的拟议光晶格场景中接近经典控制极限的方法。该设计允许人们探索控制作为有效的 → 0 以及退相干对量子控制的比较影响。下面的计算结果还强调了经典规则动力学与混沌动力学领域的量子响应差异。作为一种特殊的控制场景,我们关注对称性破坏,其中空间对称系统被具有频率分量和 2 的激光场照射。这样的场产生相位可控的净偶极子或电流,而不会在电位中引入偏置(例如,参见参考文献 1、3、5、8-10)。我们提出的系统是一个移动或振动的一维光学晶格 11,12,如下图所示,通过规范变换,可以将其视为与空间均匀电场相互作用的静止空间对称周期势。我们考虑了 → 0 极限以及退相干的影响,后者
基础量子力学(BQM):11. 在量子力学的背景下解释算子、状态、特征值和特征函数这些术语(首先针对双态系统,然后扩展到具有连续特征值的系统),并确定物理量的期望值和不确定性。12. 确定给定势阱(例如无限势阱和屏障)中粒子的波函数,并列举其在技术中的应用示例(例如量子点显示器、存储设备)。13. 使用特征函数的正交性并对叠加中的量子系统进行基本分析。14. 讨论量子现象(例如量子叠加、波函数坍缩、量子隧穿和海森堡不确定性原理),并解释它们与我们对现实的感知的冲突。15. 使用氢原子的量子数:n、l、m 确定相应的特征函数(来自给定的表格)并解决相关的简单问题。课程内容 基础(FND) 波的性质 光速 叠加、衍射和干涉 原子和亚原子粒子 狭义相对论(SR) 参考系和伽利略变换 狭义相对论和洛伦兹变换的假设 长度收缩和时间膨胀 闵可夫斯基时空图 解决悖论 相对论动量、动能和能量 基础核物理(BNP) 放射性粒子(𝛼,𝛽 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑎𝑛𝑑 𝛾−𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛) 核裂变和聚变 放射性 质能当量 医学应用和剂量 量子物理(QP) 黑体辐射物理量的量化光电效应康普顿散射和波长对的产生/湮没双缝实验戴维森-杰默实验波粒二象性氢原子(玻尔模型和原子光谱)基础量子力学(BQM)特征值、特征函数和算子两能级系统薛定谔方程和波函数概率(密度)无限和有限势阱(盒子中的粒子)量子谐振子势垒/台阶期望值和不确定性
3。必须个性化所有形式的免疫疗法的持续时间。在治疗12个月后,可以进行失败的推定,当一个人没有明显降低症状,并没有表现出对违法过敏原的耐受性的增加,并且使用药物使用情况也没有减少。如果没有明显的临床益处,将不会长期偿还治疗。文档要求:患者的病历必须记录索赔上提交的每个服务日期执行的服务的医疗必要性,并且必须根据要求提供文件。Medisource,Medisource Connect,Child Health Plus和基本计划Medisource,Medisource Connect,Child Health Plus以及基本计划利用上面的标准。背景过敏是对环境中某些物质的异常反应或提高敏感性。引起这种敏感性或反应的物质称为过敏原,并且可能从天然存在的材料(例如花粉和草)到人造材料,例如肥皂或化学物质。一线治疗包括在可能的情况下避免和最小化暴露。药物,包括抗组胺药,支气管扩张剂,白细胞抑制剂和类固醇(可的松),可用于扭转某些过敏反应的症状。过敏免疫疗法改变了免疫系统对致病过敏原的反应,并诱导对这些过敏原的持久耐受性。皮下免疫疗法(SCIT)是AIT的最佳研究形式,对过敏性鼻炎和鼻连接炎和过敏性哮喘有效。舌下免疫疗法(SLIT)是口服过敏原的一种替代方法,在包括患者或看护者的自我管理(包括患者或护理人员的自我给药)上,具有特定的优势,不是注射,并且与SCIT相比,严重的全身过敏反应的风险要低得多。缝隙滴(液体提取物)用于世界其他地区,但未获得美国食品药品监督管理局(FDA)的批准。基于实践参数联合工作组的实践参数,代表美国过敏,哮喘和免疫学学院(AAAAI);美国过敏,哮喘和免疫学学院(ACAAI);以及过敏,哮喘和免疫学,过敏蛋白免疫疗法的联合理事会,处方信息,临床需要将某些过敏原分隔为个人注射和专业输入,每12个月的高度过敏性免疫疗法的每12个月的每12个月的过敏剂/抗原制剂都要在120个月中进行120个Allergen Allergen Allergen Allergen Allergen Allergen的最高疗法,以进行120个月的预防疗法。大多数人的适当治疗过程。对经同行评审的科学文献(包括但不限于订阅材料)的评估为独立健康提供了上述医疗必要性的基础。需要预授权吗?是,本服务不需要☐☐否☒标准将在retro-review上使用。
学期 - I PH-101物理-I 1。Special Theory of Relativity: Frame of Reference, Galilean Transformation, Inertial and Non-inertial frames, Postulates of Special Theory of Relativity, Michelson-Morley Experiment, Lorentz transformation of space and time, Length contraction, Time dilation, Simultaneity in relativity theory, Addition of velocities, Relativistic dynamics, Variation of mass with velocity, Equivalence of mass and energy.2。热物理学:Maxwell-Boltzmann分子速度的分布定律,R.M.S.S.S的评估以及平均速度和最可能的速度,平均自由路径,运输现象。3。几何光学:组合薄镜头,同轴光学系统的主要点,厚镜头,基数的位置和特性,牛顿公式,图像的图形结构。眼部碎片,修复点。光学仪器光谱计(棱镜和光栅),六分。4。物理光学:观察干扰的干扰条件。条纹的连贯性和可见性。使用菲涅尔的二倍主义生产干涉条纹和波长的测定。米其逊干涉仪及其用途。由于薄膜引起的干扰。楔形胶片。牛顿的戒指。衍射-Frasnel的衍射,菲涅耳的半个周期区域,区域板,Fraunhofer的衍射,单缝,双缝。平面光栅理论。主最大值的宽度。瑞利的决议标准。解决棱镜和光栅的能力。通过反射极化。极化 - 非极化,极化和部分极化的灯光。单轴晶体,宝丽来,Huygen的双重折射理论的双重折射。半波和四分之一波板。生产和分析平面椭圆形和圆形偏振光。光学活动。菲涅尔的光旋转理论,特定旋转,比夸夸兹和劳伦斯半阴影。5。全息图:基本原理,全息及其应用。6。激光器:刺激和自发发射,爱因斯坦系数,刺激和自发排放的相对贡献,种群反演,激光发射,红宝石和He-ne激光器,激光光的特征。7。声学:超声波的生产和检测,液体中速度的测量,超声处理的应用。建筑物的典范。参考文献1。Mechanics-D.S.Mathur 2。optics-a.k.ghatak 3。热力和热力学-Brijlal&Subramanium 4。热物理b.k.agarwal 4。振荡和波的物理学 - r.b.singh 5。工程物理-A.S.S.Vasudeva
光发射实验是在安装在Soleil存储环(法国圣奥宾)上的Cassiopee梁线上进行的。光束线托管两个端站。使用具有线性水平极化的20个EV入射光子,用于测量费米表面和带分散体的高分辨率ARPES端域。它配备了科学R4000电子分析仪。样品上的光子斑点大小为50×50 µm 2,总体动能分辨率(考虑到光子能和电子动能分辨率)的总分辨率为10 meV。第二个终端是一个自旋分辨的ARPES实验,其中梁的大小约为300×300 µm 2。它配备了MBS A1-Analyzer,并带有2D检测器进行ARPES测量。接近该2D检测器,一个1×1 mm 2孔收集具有明确定义的动能和动量的光电子。它们被发送到一个旋转操纵器中,能够沿Ferrum Vleed自旋检测器的磁化轴定位任何自旋组件,该轴是由Fe(100)-p(1×1)O表面[1,2]制成的,该旋转式旋转式探测器被沉积在W-靠基层上。沿选定方向的自旋极化与收集的两个信号的差成正比,以相反的氧化物靶标的磁化。为了减少仪器造成的测量不对称性,每个极化方向都采集了四个测量,从而逆转了Ferrum磁化强度和电子自旋方向。1×1 mm 2孔引入了动能和波矢量的整合。然后通过p = s -1(iσ + - iσ - ) /(Iσ + +iσ-)确定极化,其中我们估计检测器的Sherman功能在0.15和0.3之间[3]。对于动能,它对应于使用的通行能量的0.23%(在我们的情况下为10 eV),因此对应于23 MeV。与分析仪的能量分辨率(该通行能量为10 MEV,入口缝隙为400 µm),总体动能分辨率为25 MeV。对于波矢量,1 mM孔径对应于总(30°)角范围的4%的积分,这给出了1.2°。在20 eV光子能量时,对于费米水平的电子,这给出了k分辨率约为0.048°a -1。分析仪光学元件是可移动的,可以在大型2D(30°×30°)角范围内收集电子。为了在费米级别绘制自旋纹理,将分析仪设置为适当的动能,而光学器件则沿两个x和y垂直方向移动0.2◦。在每个步骤中测量两个面内旋转组件。
膜型超材料,[17] 最近的研究表明,将液体与固体结构结合起来可以极大地促进可重构性。最近展示了一种被动可重构亥姆霍兹共振器,其中填充了不同体积的水来调节其自由腔空间。 [18] 但是,为了主动调整液体嵌入超材料设计,我们需要主动微流体技术来在芯片上控制液体的流动性。文献中存在许多主动微流体控制机制 [19],如光电润湿、电泳和表面声波。这些可用于以受控方式移动微尺度液滴,并已被用于各种应用,如芯片实验室、[20] 打印、[21] 光流体透镜 [22] 和声流体。 [23] 然而,声流体领域 [24] 迄今为止仅关注使用施加声场来操纵液滴 [25,26],而不是反之亦然。此外,由于尺寸大、吞吐量低、体积大以及整合主动控制机制所需的材料成本高昂,制造超紧凑可调超材料设计面临着制造挑战。在这里,我们提出并开发了一种新型超紧凑元结构,我们称之为超材料,它具有利用微流体的主动驱动机制,这将具有重要实际意义并促进微流体声学超材料 (MAM) 的新方法。在本文中,我们设计、制造并展示了一种液滴集成超材料,其可调性源自一种基于数字微流体的主动液滴操纵技术,称为电介质电润湿 (EWOD)。 [27–29] 我们利用微机电 (MEMS) 技术实现了对深亚波长狭缝(尺寸为长度 = 0.5 λ (L)、宽度 = 0.06 λ 和高度 = 0.02 λ )的动态控制,以操纵超声波(40 kHz)。例如,在文献中很少见到在频率 20.9 kHz(λ 表示声音的波长)时约为 λ /650 的超薄深亚波长超材料,其中通过在超表面上镂空图案化来剪纸任意图案。[30] 已报道的大部分作品(如范围在微米到毫米级的超声波超透镜 [31])都是“被动的”,但这里我们提出了一种新型的主动可调谐深亚波长超薄超材料(厚度为 200 微米,高达 λ /44),据我们所知,与以前的研究相比创下了纪录。基于 MEMS 的 MAM 设计铺平了道路