摘要 - Audio DeNoisisiques是增强音频质量的重要工具。尖峰神经网络(SNN)为音频转化提供了有希望的机会,因为它们利用了脑启发的体系结构和计算原理来有效地处理并分析音频信号,从而通过提高的准确性和降低了计算机上的高空空间,从而实现了实时Denoo。本文介绍了Spiking-Fullsubnet,这是一种基于SNN的实时音频DeNoising模型。我们提出的模型不适合一种新型的封闭式尖峰神经元模型(GSN),以有效捕获多尺度的时间信息,这对于实现高赋予音频降解至关重要。此外,我们建议将GSN集成在优化的全snet神经架构中,从而实现了全频段和子带频率的有效处理,同时显着降低了计算的额外处理。与体系结构的进步一起,我们结合了一个基于度量歧视的损失函数,该功能有选择地增强所需的性能指标而不会损害他人。经验评估表明,尖峰全鞋的表现出色,将其排名为英特尔神经形态深噪声抑制挑战的轨道1(算法)的赢家。索引术语 - 语言denoising,尖峰神经网络,neu-Romorphic Computing,Audio Signal Processing
摘要 — 侵入式皮质脑机接口 (BMI) 可以显著改善运动障碍患者的生活质量。尽管如此,外部安装的基座存在感染风险,因此需要完全植入的系统。然而,这样的系统必须满足严格的延迟和能量限制,同时提供可靠的解码性能。虽然循环脉冲神经网络 (RSNN) 非常适合在神经形态硬件上进行超低功耗、低延迟处理,但它们是否满足上述要求尚不清楚。为了解决这个问题,我们训练了 RSNN 来解码两只猕猴的皮质脉冲序列 (CST) 中的手指速度。首先,我们发现大型 RSNN 模型在解码精度方面优于现有的前馈脉冲神经网络 (SNN) 和人工神经网络 (ANN)。接下来,我们开发了一个微型 RSNN,它具有较小的内存占用、较低的发放率和稀疏连接。尽管计算要求降低了,但生成的模型的性能明显优于现有的 SNN 和 ANN 解码器。因此,我们的结果表明,RSNN 在资源受限的情况下提供了具有竞争力的 CST 解码性能,并且是完全植入式超低功耗 BMI 的有希望的候选者,具有彻底改变患者护理的潜力。索引术语 — 脉冲神经网络、脑机接口、皮质脉冲序列解码、神经形态硬件
摘要:从大脑中汲取灵感,已经提出了尖峰神经网络(SNN)来理解和减少机器学习和神经形态计算之间的差距。超级学习是传统ANN中最常用的学习算法。然而,由于尖峰神经元的不连续和非差异性质,直接使用基于反向传播的监督学习方法培训SNN具有挑战性。为了克服这些问题,本文提出了一种新颖的基于元疗法的监督学习方法,以适应时间误差函数。我们研究了七种称为Harmony Search(HS),杜鹃搜索(CS),差异进化(DE),粒子群优化(PSO),遗传算法(GA),人工BEE COLONY(ABC)和语法进化方法的遗传算法(GA),遗传算法(GA),遗传算法优化(GA),遗传算法优化(GA),遗传算法优化(GA),用于携带网络培训的搜索方法。使用相对目标频率时间而不是固定和预定的时间,使误差函数的计算更加简单。使用UCI机器学习存储库中收集的五个基准数据库评估了我们所提出的方法的表现。实验结果表明,与其他实验算法相比,该提议的算法在解决四个分类基准数据集方面具有竞争优势,其准确率为0.9858、0.9768、0.77752,而IRIS,癌症,糖尿病,糖尿病和0.6871的精度为0.9858、0.9768、0.77752和0.6871。在七种元启发式算法中,CS报告了最佳性能。
背景:类脑计算将传统计算技术与受人脑启发的计算和认知思想、原理和模型相结合,以构建智能信息系统,用于我们的日常生活。图像和语音处理、盲信号分离、创造性规划和设计、决策、自适应控制、知识获取和数据库挖掘只是类脑计算应用的一些领域。我们对大脑功能了解得越多,信息系统就越智能。本书还介绍了心智和意识建模的一个主题,以及人工智能领域的其他新理论模型和应用。人脑是一种非常节能的装置。从计算角度来说,它仅需 20 瓦的功率就能每秒执行相当于十亿亿亿亿次浮点运算(1 后面跟着 18 个零)的数学运算。相比之下,世界上最强大的超级计算机之一“橡树岭前沿” (Oak Ridge Frontier) 最近演示了百亿亿次计算能力。然而,要实现这一壮举需要数百万倍的功率,即 20 兆瓦。我和我的同事希望通过大脑来指导开发强大而节能的计算机电路设计。你看,能源效率已经成为阻碍我们制造更强大的计算机芯片的一个主要因素。虽然更小的电子元件已成倍地提高了我们设备的计算能力,但进展却正在放缓。有趣的是,我们对大脑如何运作的看法一直是计算机世界的灵感源泉。为了理解我们是如何得出这种方法的,我们需要简单回顾一下计算的历史。人脑是宇宙中最复杂的物体之一。它能够在不断变化的环境中执行高级认知任务,例如抽象、概括、预测、决策、识别和导航。大脑这种较高的认知能力得益于它的功耗非常低,只有20W。大脑能效高的原因主要有两点:一是信息交换和处理是事件驱动的;因此,尖峰能量仅在需要的时间和地点被消耗。其次,神经元和突触位于同一个神经网络中,高度互联,每个神经元平均与104个其他神经元相连。神经元/突触共位意味着数据处理(由突触兴奋和神经元放电组成)和记忆(由突触权重和神经元阈值组成)在大脑内共享同一位置。许多研究工作旨在模仿人类大脑的计算类型,以实现非凡的能源效率。这是神经形态工程的目标,其中,脉冲神经网络(SNN)是利用人工神经元和突触开发出来的。 SNN 通常采用与 Rosenblatt 和 Minsky 开创的传统感知器网络相同的全连接 (FC) 架构。然而,在 SNN 中,神经元和突触通常表现出对施加的尖峰的时间依赖性响应,例如神经元内的整合和发射以及跨突触的兴奋性突触后电流 (EPSC)。这与用于计算机视觉和语音识别的人工智能 (AI) 加速器中的传统人工神经网络 (ANN) 形成对比,其中信息是同步的并且基于信号幅度而不是时间。大多数 SNN 通常依赖于互补金属氧化物半导体 (CMOS) 技术,具有两个显著的关键优势:首先,CMOS 技术在半导体行业生态系统中广泛可用,包括设计、制造和鉴定,为基于 CMOS 的神经形态工程成为成熟主题创造了条件。其次,CMOS晶体管可以按照摩尔定律小型化,其中减小
从历史上看,记忆技术已根据其存储密度,成本和潜伏期进行了评估。除了这些指标之外,在低区域和能源成本中启用更智能和智能的计算平台的需求带来了有趣的途径,以利用非挥发性记忆(NVM)技术。在本文中,我们专注于非易失性记忆技术及其在生物启发的神经形态计算中的应用,从而实现了基于尖峰的机器智能。与先进的连续价值神经网络相比,基于离散的神经元“动作电位”的尖峰神经网络(SNN)不仅是生物纤维,而且是实现能量的有吸引力的候选者。nvms提供了实施几乎所有层次结构(包括设备,电路,体系结构和算法)几乎所有层次结构的区域和能量snn计算面料的承诺。可以利用NVM的内在装置物理学来模拟单个神经元和突触的动态。这些设备可以连接在密集的横杆状电路中,从而实现了神经网络所需的内存,高度平行的点产生计算。在架构上,可以以分布式的方式连接此类横梁,从而引入其他系统级并行性,这是与传统的Von-Neumann架构的根本性。最后,可以利用基于NVM的基础硬件和学习算法的跨层优化,以在学习和减轻硬件Inaccu-Racies方面的韧性。手稿首先引入神经形态计算要求和非易失性记忆技术。随后,我们不仅提供了关键作品的审查,而且还仔细仔细审查了从设备到电流到架构的不同抽象级别的各种NVM技术的挑战和机遇,以及硬件和算法的共同设计。
生物系统中的 EAM,更具体地说是大脑中的 EAM,是通过终身学习 (LLL) 创建的,其中相关项目在时间和空间中的结构(例如集群)不断创建和修改。另一方面,LLL 依赖于基于共性和相似性将新项目添加到现有结构中,因此 LLL 和 EAM 是同一过程的双重原则。这种二元性涉及大脑中不同层次的分子和神经功能,例如:神经发生;神经调节;情景重放;元可塑性;多感觉整合。1 大脑中的 LLL 是基于神经网络的人工系统中 LLL 的终极灵感,更具体地说,是基于大脑启发的脉冲神经网络 (SNN) 架构,其中时空联结结构不断形成和修改以形成不断发展的时空联想记忆 (ESTAM)。2–5
摘要 — 近年来,尽管物理设备扩展速度放缓,但计算机架构大胆而激进的创新趋势日益明显,旨在继续提高计算性能。该领域的一个新前沿是人工智能 (AI) 硬件。虽然 AI 硬件的功能性仍然是主要关注点,但在主流采用之前,需要解决这些新架构的可测试性和可靠性问题。本综述论文涵盖了 AI 硬件可靠性和可测试性解决方案的最新研究和开发,包括用于加速器和神经形态设计的人工神经网络 (ANN) 和脉冲神经网络 (SNN) 的数字或模拟实现。本文还讨论了趋势、挑战和观点。
摘要 — 近年来,尽管物理设备扩展速度放缓,但计算机架构大胆而激进的创新趋势日益明显,旨在继续提高计算性能。该领域的一个新前沿是人工智能 (AI) 硬件。虽然 AI 硬件的功能性仍然是主要关注点,但在主流采用之前,需要解决这些新架构的可测试性和可靠性问题。本综述论文涵盖了 AI 硬件可靠性和可测试性解决方案的最新研究和开发,包括用于加速器和神经形态设计的人工神经网络 (ANN) 和脉冲神经网络 (SNN) 的数字或模拟实现。本文还讨论了趋势、挑战和观点。
嵌入式设备可以在本地实时处理生物医学信号,因此临床研究和治疗应用的生物医学信号分析可以受益匪浅。一个例子是分析癫痫患者的颅内脑电图 (iEEG) 以检测高频振荡 (HFO),这是致痫脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可以实时在线分析数据。在这里,我们介绍了一种神经形态系统,该系统在同一芯片上结合了神经记录头端和脉冲神经网络 (SNN) 处理核心来处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现最先进的准确性、灵敏度和特异性。这是首次使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的可行性研究。
将氧化成SN IV物种,通过电子陷阱的不良形成和材料的P掺杂导致性能大幅下降。[6]先前的研究报道了这种氧化的许多起源,例如溶剂[7,8]处理条件[9],甚至是通过在锡贫乏环境中占比例的。[10]停止这种氧化是实现高效且稳定的锡卤化物PSC的要求之一。因此,已经进行了几项试验,以应对SN II的氧化。这些包括使用新的溶剂系统来避免二甲基硫氧化物(DMSO)氧化[11],[11]使用还原剂消除SN IV的含量,例如金属sn粉[12]或下磷酸[13]或介入添加剂来减轻诸如Snn IV的形成,snf snf,snf,snf snf snf snf snf。[6,14]