a 印度理工学院鲁尔基分校计算机科学与工程系,印度鲁尔基,邮编 247667 b 加拿大新不伦瑞克大学生物医学工程研究所 c 印度理工学院布巴内斯瓦尔分校电气科学学院,印度奥里萨邦,邮编 752050 d 英国蒂赛德大学计算机、工程与数字技术学院
摘要 — 迄今为止,脑启发式认知计算主要有两种方法:一种是使用多层人工神经网络 (ANN) 执行模式识别相关任务,另一种是使用脉冲神经网络 (SNN) 模拟生物神经元,以期达到与大脑一样高效和容错的效果。前者由于结合了有效的训练算法和加速平台而取得了长足的进步,而后者由于缺乏两者而仍处于起步阶段。与 ANN 相比,SNN 具有明显的优势,因为它们能够以事件驱动的方式运行,因此功耗非常低。最近的几项研究提出了各种 SNN 硬件设计方案,然而,这些设计仍然会产生相当大的能源开销。在此背景下,本文提出了一种涵盖设备、电路、架构和算法级别的综合设计,以构建用于 SNN 和 ANN 推理的超低功耗架构。为此,我们使用基于自旋电子学的磁隧道结 (MTJ) 设备,这种设备已被证明既可用作神经突触交叉开关,又可用作阈值神经元,并且可以在超低电压和电流水平下工作。使用这种基于 MTJ 的神经元模型和突触连接,我们设计了一种低功耗芯片,该芯片具有部署灵活性,可用于推理 SNN、ANN 以及 SNN-ANN 混合网络的组合——与之前的研究相比,这是一个明显的优势。我们在一系列工作负载上展示了 SNN 和混合模型的竞争性能和能源效率。我们的评估表明,在 ANN 模式下,所提出的设计 NEBULA 的能源效率比最先进的设计 ISAAC 高达 7.9 倍。在 SNN 模式下,我们的设计比当代 SNN 架构 INXS 的能源效率高出约 45 倍。 NEBULA ANN 和 SNN 模式之间的功率比较表明,对于观察到的基准,后者的功率效率至少高出 6.25 倍。索引术语 — 神经网络、低功耗设计、领域特定架构、内存技术