摘要 — 侵入式皮质脑机接口 (BMI) 可以显著改善运动障碍患者的生活质量。尽管如此,外部安装的基座存在感染风险,因此需要完全植入的系统。然而,这样的系统必须满足严格的延迟和能量限制,同时提供可靠的解码性能。虽然循环脉冲神经网络 (RSNN) 非常适合在神经形态硬件上进行超低功耗、低延迟处理,但它们是否满足上述要求尚不清楚。为了解决这个问题,我们训练了 RSNN 来解码两只猕猴的皮质脉冲序列 (CST) 中的手指速度。首先,我们发现大型 RSNN 模型在解码精度方面优于现有的前馈脉冲神经网络 (SNN) 和人工神经网络 (ANN)。接下来,我们开发了一个微型 RSNN,它具有较小的内存占用、较低的发放率和稀疏连接。尽管计算要求降低了,但生成的模型的性能明显优于现有的 SNN 和 ANN 解码器。因此,我们的结果表明,RSNN 在资源受限的情况下提供了具有竞争力的 CST 解码性能,并且是完全植入式超低功耗 BMI 的有希望的候选者,具有彻底改变患者护理的潜力。索引术语 — 脉冲神经网络、脑机接口、皮质脉冲序列解码、神经形态硬件
最近,从鲁棒性和能量效率方面,受到脑启发的计算模型表现出巨大的潜力,可以超越当今的深度学习解决方案。尤其是,尖峰神经网络(SNN)和高维计算(HDC)在实现了有效和鲁棒的认知学习方面表现出了令人鼓舞的结果。尽管取得了成功,但这两个受大脑启发的模型具有不同的优势。SNN模仿了人脑的物理特性,而HDC则以更抽象和功能水平对大脑进行建模。他们的设计理念展示了激励其组合的互补模式。在记忆的经典心理模型的帮助下,我们提出了SpikeHD,这是第一个从根本上结合尖峰神经网络和超维计算的框架。SpikeHD生成了一个可扩展且强大的认知学习系统,可以更好地模仿大脑功能。SpikeHD通过保留基于原始事件的Spike数据的空间和时间相关性来利用尖峰神经网络提取低级特征。然后,它利用HDC通过将信号映射到高维空间,学习抽象信息并对数据进行分类来通过SNN输出进行操作。我们对一组基准测试问题的广泛评估表明,与SNN架构相比,SpikeHD提供了以下好处:(1)通过利用两阶段信息处理来增强学习能力,(2)使噪声和失败的实质性稳健性和(3)减少网络的大小和需求的参数,从而使学习能力具有重要的功能。
摘要 神经形态架构实现生物神经元和突触,以使用脉冲神经元和生物启发学习算法来执行机器学习算法。这些架构节能,因此适用于资源和功率受限的环境中的认知信息处理,物联网 (IoT) 的传感器和边缘节点在这些环境中运行。为了将脉冲神经网络 (SNN) 映射到神经形态架构,先前的研究提出了基于设计时的解决方案,其中首先使用代表性数据离线分析 SNN,然后将其映射到硬件以优化一些目标函数,例如最小化脉冲通信或最大化资源利用率。在许多新兴应用中,机器学习模型可能会根据使用某些在线学习规则的输入而改变。在在线学习中,根据输入激励,在运行时可能会形成新连接或现有连接可能会消失。因此,可能需要将已映射的 SNN 重新映射到神经形态硬件以确保最佳性能。不幸的是,由于计算时间较长,基于设计时的方法不适合在每次学习周期后在运行时重新映射机器学习模型。在本文中,我们提出了一种设计方法,用于在运行时将基于在线学习 SNN 的应用程序的神经元和突触划分并映射到神经形态架构。我们的设计方法分为两个步骤 - 步骤 1 是一种逐层贪婪方法,将 SNN 划分为包含神经形态架构约束的神经元和突触簇;步骤 2 是一种爬山优化算法,可最大限度地减少簇之间传递的总尖峰,从而改善架构共享互连的能耗。我们进行实验,使用合成和真实的基于 SNN 的应用程序来评估我们算法的可行性。我们证明,与最先进的基于设计时的 SNN 划分方法相比,我们的算法将 SNN 映射时间平均缩短了 780 倍,而解决方案质量仅降低了 6.25%。
从历史上看,记忆技术已根据其存储密度,成本和潜伏期进行了评估。除了这些指标之外,在低区域和能源成本中启用更智能和智能的计算平台的需求带来了有趣的途径,以利用非挥发性记忆(NVM)技术。在本文中,我们专注于非易失性记忆技术及其在生物启发的神经形态计算中的应用,从而实现了基于尖峰的机器智能。与先进的连续价值神经网络相比,基于离散的神经元“动作电位”的尖峰神经网络(SNN)不仅是生物纤维,而且是实现能量的有吸引力的候选者。nvms提供了实施几乎所有层次结构(包括设备,电路,体系结构和算法)几乎所有层次结构的区域和能量snn计算面料的承诺。可以利用NVM的内在装置物理学来模拟单个神经元和突触的动态。这些设备可以连接在密集的横杆状电路中,从而实现了神经网络所需的内存,高度平行的点产生计算。在架构上,可以以分布式的方式连接此类横梁,从而引入其他系统级并行性,这是与传统的Von-Neumann架构的根本性。最后,可以利用基于NVM的基础硬件和学习算法的跨层优化,以在学习和减轻硬件Inaccu-Racies方面的韧性。手稿首先引入神经形态计算要求和非易失性记忆技术。随后,我们不仅提供了关键作品的审查,而且还仔细仔细审查了从设备到电流到架构的不同抽象级别的各种NVM技术的挑战和机遇,以及硬件和算法的共同设计。
神经形态计算广义上指使用非冯·诺依曼体系结构来模拟人脑的学习过程。术语“冯·诺依曼体系结构”表示任何存储程序计算机,由于它们共享一条公共总线,因此获取指令和数据操作可能不会同时发生,从而导致“冯·诺依曼瓶颈”,即在单独的内存和计算块之间进行耗能和耗时的数据传输。这种瓶颈限制了计算系统执行数据密集型任务的能力,随着现代机器学习模型的出现,对数据密集型任务的需求只会越来越大。此外,最近的一份报告显示,在“过度参数化模式”下运行的高度复杂的神经网络不会对训练数据中的虚假趋势进行过度拟合,而是比复杂度较低的神经网络对未知数据表现出更好的泛化能力 [ 1 ],这促使模型参数数量自 2015 年以来逐年呈指数增长,训练数据集的大小自 1988 年以来也呈指数增长 [ 2 , 3 ]。具体来说,过去十年见证了从 ResNet-50(> 10 7 个模型参数)到生成式预训练 Transformer 3(GPT-3)(> 10 11 个模型参数)的模型,以及从 ImageNet(~10 6 张图像)到 JFT-3B(> 10 9 幅图像)的数据集。通过克服电子通信、时钟、热管理和电力输送方面的瓶颈 [2],神经形态系统带来了可扩展硬件的希望,可以跟上深度神经网络的指数增长,从而让我们定义了神经形态计算的第一个主要方向:“加速”。那些关注加速的神经形态系统是为了提高现有机器学习模型的速度和能效而构建的,并且往往会产生相对直接的影响。一个常见的例子是深度神经网络前向传递中用于向量矩阵乘法 (VMM) 的交叉阵列。相比之下,我们将神经形态计算的第二个主要目标定义为“实现”,即在非冯·诺依曼架构中实现人类神经生物学功能。第二个目标的影响将比第一个目标更滞后,但代表了下一代机器学习模型的硬件实现,在脉冲神经网络 (SNN)、赫布学习和霍奇金-赫胥黎神经元模型领域取得了进展。
近年来,人工智能和机器学习 (ML) 彻底改变了各个科学技术领域,在计算机视觉、自然语言处理和医疗保健方面取得了重大进步(Esteva 等人,2019 年)。尽管取得了这些进展,但由于大脑活动的复杂性和非平稳性,将这些技术应用于脑电图 (EEG) 信号的分析仍面临独特的挑战。EEG 是实时了解大脑动态的关键工具,常用于临床诊断、认知神经科学和脑机接口(Schomer and Lopes da Silva,2017 年)。然而,EEG 信号的噪声和高维性质使得标准深度学习模型难以有效应用。基础模型(例如基于 Transformer 的架构)在自然语言处理和计算机视觉等领域表现出前所未有的性能(Vaswani,2017 年;Radford 等人,2021 年)对于应对这些挑战大有希望。这些模型在海量数据集上进行预训练,然后针对特定任务进行微调,从而具有广泛的泛化和适应性。然而,它们在脑电图分析中的有效性有限,因为它们往往缺乏捕捉时间精度和生物合理性的机制,而这些对于准确建模脑信号至关重要(Roy et al., 2019)。克服这些限制的一个有希望的方向是将受脑启发的算法融入基础模型。受脑启发的算法,例如脉冲神经网络 (SNN)、分层时间记忆 (HTM) 和生物学上合理的学习机制,如赫布学习,模仿了神经过程的结构和功能(Schmidgall et al., 2024)。这些算法旨在捕捉更类似于实际大脑网络中观察到的时间和空间动态。将这些算法融入基础模型可能会弥合标准深度学习方法与脑电图信号的动态、多维性质之间的差距。因此,在本文中,我们提供了关于如何将脑启发算法与基础模型相结合以增强 EEG 信号分析的观点。我们认为,通过将基础模型的可扩展性和通用性与脑启发算法的时间特异性和生物学合理性相结合,这种混合方法可以解决 EEG 信号处理中的当前局限性。虽然这些方法的整合带来了重大的技术挑战,但它们的协同作用可以为神经科学中更准确、更可解释的 AI 系统提供新的途径。