GE 3T MR750 扫描仪:BIRC 拥有最先进的 GE Signa MR750 3.0T 磁铁。当前软件 ID DV26.0_R04_1921.a。在比较 1.5T 磁铁和 3.0T 磁铁的协议时,您必须记住以下几点。 SNR 大约是 1.5T 的两倍 - 增加的 SNR 会导致运动增加(可以通过增加矩阵来纠正) T1 弛豫率更长:800-1000 - 这会降低您的 SAR T2 和 T2* 率更短:将 TE 从 100 降低到 80 化学位移具有两倍的磁化率:脂肪和水的化学位移为 447 赫兹 3T 的磁化率是 fMRI 5-10% 的四倍,而 1.5T 为 1-2% RF 功率沉积大约是四倍 增加磁体流体动力学效应(T 膨胀) 注意:这些只是提到的几个差异,不应视为绝对差异。
目的:由于实际、方法和分析方面的考虑,婴儿期功能性磁共振成像 (fMRI) 面临挑战。本研究旨在实施一种与硬件相关的方法来提高清醒婴儿 fMRI 的受试者依从性。为此,我们设计、构建并评估了一个自适应的 32 通道阵列线圈。方法:为了能够使用紧密贴合的头部阵列线圈对 1-18 个月大的婴儿进行成像,开发了一种可调节头部线圈概念。线圈设置方便半坐式扫描姿势,以提高婴儿的整体扫描依从性。耳罩隔间直接集成在线圈外壳中,以便在使用声音保护时不会失去线圈在婴儿头部的紧密贴合。使用基准级指标、信噪比 (SNR) 性能和加速成像能力,根据模型数据对构建的阵列线圈进行评估,以用于平面和同步多层 (SMS) 重建方法。此外,还获取了初步的 fMRI 数据以评估体内线圈的性能。结果:与市售的 32 通道头部线圈相比,模型数据显示 SNR 平均增加了 2.7 倍。在婴儿头部模型的中心和外围区域,测得的 SNR 增益分别为 1.25 倍和 3 倍。婴儿线圈还显示出对欠采样 k 空间重建方法和 SMS 技术的良好编码能力。
我们提出了量子信念传播 (QBP),一种基于量子退火 (QA) 的低密度奇偶校验 (LDPC) 错误控制码解码器设计,该解码器在 Wi-Fi、卫星通信、移动蜂窝系统和数据存储系统中得到了广泛应用。QBP 将 LDPC 解码简化为离散优化问题,然后将简化的设计嵌入到量子退火硬件中。QBP 的嵌入设计可以在具有 2,048 个量子比特的真实最先进的 QA 硬件上支持块长度高达 420 位的 LDPC 码。我们在真实的量子退火器硬件上评估性能,对各种参数设置进行敏感性分析。我们的设计在高斯噪声无线信道上在 SNR 9 dB 下实现了 20 µ s 内的 10 − 8 比特错误率和 50 µ s 内的 1,500 字节帧错误率 10 − 6。进一步的实验测量了在真实无线信道上的性能,需要 30 µ s 才能在 SNR 15-20 dB 下实现 1,500 字节 99.99% 的帧传输率。QBP 的性能优于基于 FPGA 的软信念传播 LDPC 解码器,在 SNR 低 2.5–3.5 dB 时达到 10 − 8 的误码率和 10 − 6 的帧错误率。就局限性而言,QBP 目前无法在当前的 QA 处理器上实现实用的协议大小(例如 Wi-Fi、WiMax)LDPC 码。我们在本工作中的进一步研究提出了未来成本、吞吐量和 QA 硬件趋势方面的考虑。
摘要。生成图像重建算法(例如调节条件扩散模型)在医学成像领域越来越流行。这些功能强大的模型可以将低信号比率(SNR)输入转换为具有高SNR的出现的输出。但是,输出可以具有一种称为幻觉的新类型错误。在医学成像中,这些幻觉对于放射科医生来说可能并不明显,但可能会导致诊断错误。通常,幻觉是指由机器学习模型引起的对象结构的估计错误,但是没有广泛接受的方法来评估幻觉幅度。在这项工作中,我们提出了一个新的图像质量指标,称为幻觉指数。我们的方法是计算从重建图像的分布到零幻觉参考分布的距离。为了评估我们的方法,我们对电子显微镜图像,模拟噪声测量和应用基于扩散的重现进行了数值实验。我们重复采样了测量和生成重建,以计算样品平均值和协方差。对于零幻觉参考,我们使用了应用于地面真理的正向扩散过程。我们的结果表明,较高的测量SNR导致相同的明显图像质量的幻觉指数降低。我们还评估了早期停止在反向扩散过程中的影响,并发现更适度的降解强度可以减少幻觉。我们认为,该指标对于评估生成图像重建或作为警告标签可能很有用,可以将医学图像中幻觉的程度告知放射科医生。
图 6. 球体的加权噪声 LSP(SNR = 3)与模拟 LSP 的比较。后者的特性是通过谱法和非线性回归获得的,并在图例中呈现。谱方法的 MSE 和 log(MSE) 分别为 0.493 和 −0.307 ,而回归方法的 MSE 和 log(MSE) 分别为 0.198 和 −0.703 。
扩散式卫星星座为导弹发射检测、低信噪比 (SNR) 红外搜索与跟踪 (IRST) 以及空间域感知提供了极具吸引力的解决方案。与将资产置于地球静止轨道 (GEO) 相比,低地球轨道/中地球轨道 (LEO/MEO) 的 Delta-V 较低,地面和大气分辨率以及可实现的 SNR 更高,并且技术更新可以更容易地完成。此外,分散式星座能够更好地吸收单个资产的损失,而不会遭受相应的系统能力损失,尤其是在采用平台网络和冗余时。部署多达数百颗卫星的星座的一个主要考虑因素是,与它们要取代的少数 GEO 资产相比,它们的实施必须在不大幅增加成本的情况下完成。此外,部署必须在短时间内(而不是几十年)完成才能实现运营效率,因此实现高制造率的能力至关重要。最后,虽然卫星平台、通信系统和处理的价格已经下降,但传统使用的红外传感器的价格却没有下降。
探地雷达 (GPR) 是一种成像系统,可用于观察现场地下情况,以研究土壤的层组成或埋藏物体的存在。由于地面的电磁特性,此类图像通常具有非常低的信噪比 (SNR)。此外,根据设计,埋藏物体被观察为双曲线,其形状可能与物体类型(例如空腔或管道)相关联。在这种情况下,埋藏物体的分类在民用应用中非常重要,例如恢复埋藏天然气管道的位置 [1] 或军事应用,例如地雷探测 [2]。为了进行这种识别,一些研究考虑使用信号反演技术 [3] 来提高 SNR,以便地球物理学家进行手动解释。当需要处理大量图像时,这种解决方案可能不切实际,因为它需要专门的人力资源。因此,自动识别方法已成为必需,并受到社区的关注。GPR 信号的自动分类分两步进行。首先,感兴趣区域(ROI)对应于
从月球,火星到太阳系,太阳,甚至系外行星的中央机构,深空探索[1] [1]促进了对太阳系和宇宙的形成和演变的研究,尤其是在追踪生命的起源方面。高能通量密度的固有特征确定空间检测器在宇宙微波背景辐射温度为2.7 k的情况下通过辐射冷却完全散发热量。因此,主动制冷技术是高信噪比(SNR)(SNR)的至关重要的保证,以及由于空间探索的高度准确性,可探索太空的准确性,并探索了深度探索[2] [2] [2] [2]。在中国,当前的轨道制冷系统几乎在液氮温度范围内工作[3]。到目前为止,关于液体液和液态温度温度较低的空间制冷技术的相应发展仍处于起步阶段,并且在实验室研究中仅研究了几种冷冻冷却器原型[4,5]。但是,近年来,中国促进的太空天文学计划需要
28/56 位、50 MIPS 数字音频处理器 2 个 ADC:SNR 为 100 dB,THD + N 为 −83 dB 4 个 DAC:SNR 为 104 dB,THD + N 为 −90 dB 完全独立操作 从串行 EEPROM 自引导 带有 4 输入多路复用器的辅助 ADC,用于模拟控制 用于数字控制和输出的 GPIO 可通过 SigmaStudio 图形工具进行完全编程 28 位 × 28 位乘法器,带有 56 位累加器,可实现全双精度处理 时钟振荡器,用于从晶振生成主时钟 PLL,用于从 64 × f S 、256 × f S 、384 × f S 或 512 × f S 时钟生成主时钟 灵活的串行数据输入/输出端口,具有 I2S 兼容、左对齐、右对齐和 TDM 模式 支持高达 192 kHz 的采样率与 3.3 V 系统兼容的电压调节器 48 引线、塑料 LQFP
在电信领域,人们特别关注块传输系统,其中数字数据以独立块的形式传输。通过几何方法并反映二进制超立方体的性质,结果表明,当用于设计 OBER 的预期 SNR 趋于无穷大时,最小误码概率接收器 (OBER) 变为最大似然序列检测器 (MLSD)。同样,当预期 SNR 降低时,OBER 会简化为极限情况下具有硬决策的白化匹配滤波器。此外,还开发了一种新型检测器,可对块中的分散位进行 MLSD 决策。如果将这种低复杂度检测器与次优接收器(例如线性或决策反馈均衡器)结合使用,则可以大大降低系统误码率。最后,使用几何方法,重新考虑了 Forney 提出的用于推导性能界限的装置精灵辅助检测器,并增加了对辅助信息的明确统计描述。这提供了一个更灵活的工具、新的性能界限,并为早期的工作提供了有益的看法。