尽管有技术的进步,但现有的车辆检测和跟踪系统通常以高车辆密度和频繁闭塞为特征的复杂交通情况失败。例如,跟踪系统可能难以区分重叠的车辆或实时保持整个帧的一致性(Zhao等,2022)。传统方法在计算上也很昂贵,这使得它们不适合智能运输系统中的现实部署。这项研究通过提出一个混合框架来解决这些挑战,该框架利用Gabor过滤器进行功能提取,Yolov5进行高核能检测和深层排序,以在动态的交通环境中进行可靠的跟踪。1.3研究范围本研究的重点是开发适用于各种现实世界应用的强大车辆检测和跟踪框架。研究包括:实施Gabor滤波器以进行基于纹理的特征提取(Duong,2021)。利用Yolov5用于实时检测汽车,公共汽车和卡车(Zhang等,2022)。深入排序以跨顺序框架进行多对象跟踪(Liu,2021)。使用代表城市,郊区和公路交通状况的注释数据集对框架进行评估(Mou等,2022)。1.4目的和目标本研究的主要目的是开发一个混合框架,以进行高效和实时的多类车辆检测和跟踪。目标包括:设计和实施混合框架,该框架结合了Gabor过滤器,Yolov5和深层排序以进行车辆检测和跟踪(Zhao等,2022)。
基于 CRISPR–Cas 的基因编辑 1 – 3 和基于信使 RNA 的基因替换技术 4,5 的发展开创了一个充满希望的时代,有望为目前无法治疗的遗传病 6 – 8 带来新的治疗方法。由于突变蛋白是在特定细胞中产生的,因此迫切需要开发器官特异性的递送策略,以充分发挥基因组药物的潜力。非病毒合成纳米颗粒是一种安全有效的方法,可以重复给药。在可用的载体中,脂质纳米颗粒 (LNP) 代表了一类可以将治疗性核酸递送到肝脏的材料 2,4,9,包括最近美国食品和药物管理局批准的一种用于治疗转甲状腺素蛋白介导的淀粉样变性的短干扰 RNA LNP 疗法,称为 Onpattro 10。尽管取得了这些进展,但目前还无法可预测和合理地设计纳米颗粒以递送到肝脏以外的目标组织。我们报告了一种称为选择性器官靶向 (SORT) 的策略,该策略可以系统地设计纳米粒子,以便在静脉 (iv) 给药后将各种货物(包括 mRNA、Cas9 mRNA/单向导 RNA (sgRNA) 和 Cas9 核糖核蛋白 (RNP) 复合物)准确递送到小鼠的肺、脾和肝脏(图 1a)。传统的 LNP 由可离子化的阳离子脂质、两亲性磷脂、胆固醇和聚乙二醇 (PEG) 脂质组成。在这里,我们表明添加补充成分(称为 SORT 分子)可精确改变体内 RNA 递送特性,并介导组织特异性基因递送和编辑,这取决于 SORT 分子的百分比和生物物理特性。在这项工作中,我们为组织特异性递送提供了证据,确定该方法适用于各种纳米颗粒系统,并提供了一种可预测的 LNP 设计新方法,以靶向治疗相关细胞。传统上,有效的细胞内递送材料依赖于可电离胺的最佳平衡来结合和释放 RNA(p K a 介于 6.0 和 6.5 之间)和纳米颗粒稳定剂
摘要 - 排序算法是数据处理中的基本工具。排序一直是算法研究人员的深层领域,许多资源已投资于分类算法的更多工作。为此,已经审查了许多现有的分类算法的算法复杂性性能。在本文中,实现了使用消息传递接口(MPI)和计算统一设备体系结构(CUDA)方法实现链排序算法。使用标准基准数据集对建议的工作进行了测试。提出的算法的主要思想是将输入数据集的元素分为几个其他临时子清单,以并行处理。使用MPI和CUDA实现的算法增强了算法的性能。使用MPI和19.9270分别使用CUDA获得的平均速度为3.9187。索引术语 - 链排序,消息传递接口,计算统一设备体系结构,加速
摘要 - 对并行排序算法的需求是由对大规模数据集有效处理的越来越多的需求所驱动的。Pigeonhole分选是在线性时间内携带排序的分类算法之一。本研究的重点是通过采用并行编程技术专门消息传递界面(MPI)和计算统一设备体系结构(CUDA)来提高提高孔分选方法的功效来提高算法的性能。主要目的是开发和评估鸽子孔分选的并行解决方案,以优化数据密集型应用中的排序效率。开始对Pigeonhole排序算法的顺序设计进行全面分析,该工作将使用CUDA进行图形处理单元(GPU)加速器和MPI创建并行实现,以进行分布式内存并行性。这项工作有助于将Pigonhole分类算法适应平行背景的宝贵见解。这些发现强调了平行化在减少总体计算时间方面的潜在优势。索引术语 - 伪造台面,并行编程,消息传递接口,计算统一设备体系结构,图形处理单元,加速
21,226 23,130 16,841 19,329 18,170 19,044 7,421 9,416 7,233 16,380 14,083 12,434 5,804 6,557 6,770 4,572 7,054 7,888 5,643 4,361 6,527 4,254 4,641 6,995 4.878 2.322 5.626 3.965 4.55 $ 3.530 2.527 5,527 564 5660 1860
Delta Rsquare Delta Rsquare All features (614) 1.75% 0.341 2.63% 0.139 Top 500 features 1.73% 0.354 2.56% 0.129 Top 400 features 1.73% 0.372 2.02% 0.148 Top 300 features 1.71% 0.343 2.22% 0.197 Top 200 features 1.73% 0.393 2.34% 0.22前100个功能1.61%0.405 1.95%0.21 Top 50个功能1.59%0.423 2.00%0.334 TOP 25特征1.62%0.42 2.29%0.372
该器件设计由两组铝 IDT 组成,放置在具有 128° YX 切口的铌酸锂基板上。作为初步步骤,基于器件的几何周期 200 μm,模拟了器件的缩小单元域。模态分析确定了瑞利波的共振频率,该频率用于后续的谐波研究。两组 IDT 在该频率下受到激励,并分析了由此产生的驻波模式。还检查了器件在共振频率下的导纳。在将模型扩展到完整器件之前,进行了时间相关分析以研究波产生的瞬态阶段。
模块:1功能的增长3小时概述和算法和数据结构的重要性 - 算法规范,递归,绩效分析,渐近符号 - BIG-O,OMEGA和THETA符号,编程样式,编码的改进,编码 - 时间间隔交易,测试,测试,测试,吸收数据。Module:2 Elementary Data Structures 6 hours Array, Stack, Queue, Linked-list and its types, Various Representations, Operations & Applications of Linear Data Structures Module:3 Sorting and Searching 7 hours Insertion sort, merge sort, sorting in linear Time-Lower bounds for sorting, Radix sort, Bitonic sort, Cocktail sort, Medians and Order Statistics-Minimum and maximum, Selection in expected linear time, Selection in最差的线性时间,线性搜索,插值搜索,指数搜索。模块:4棵树6小时的二进制树 - 二进制树的特性,b-tree,b-tree定义 - b-tree上的操作:搜索b树,创建,分裂,插入和删除,b+-tree。模块:5个高级树8小时螺纹二进制树,左派树,锦标赛树,2-3棵树,张开树,红色树木,范围树。模块:6图7小时表示,拓扑排序,最短路径算法 - Dijkstra的算法,Floyd-Warshall算法,最小跨越树 - 反向删除算法,Boruvka的算法。模块:7堆和哈希6小时堆作为优先队列,二进制堆,二项式和斐波那契堆,霍夫曼编码的堆,可扩展的哈希。模块:8个现代问题2小时