群集定期间隔短的短质体重复序列(CRISPR)相关的核酸内切酶已彻底改变了生物技术,因为它们是可编程基因组编辑者的潜力。然而,大多数天然核酸酶及其变体都有局限性。在这里,我们报告了由祖先序列重建(ASR)设计的完全合成的CRISPR-核酸酶(CAS)核酸酶(CAS)核酸酶(CAS)核酸酶(α-Syncas),该核酸酶(ASR)显示出一组可靠且独特的靶向特性,在任何其他已知的CRISPR-CAS Cass 2 System中都找不到。我们表明α-同步是一种无PAM的核酸酶,能够催化DSDNA,ssDNA和SSRNA的RNA引导,特定的裂解。合成酶也能够通过补充DSDNA,ssDNA和SSRNA靶标激活DSDNA,SSDNA和SSRNA的序列非特异性降解。此外,α-同步在人类细胞和细菌中表现出强大的基因组编辑活性。α-同步三元和第四纪复合物的冷冻电子显微镜结构提供了一个框架,以了解其扩展的酶促活性的结构基础。几乎任何核酸序列的可编程多模式靶向的能力将α-同步区分开,这是扩展基于CRISPR的技术的有希望的新工具。
Cas,CRISPR 相关;CRISPR,成簇的规律间隔的短回文重复序列;CRISPRa,CRISPR 介导的转录激活;CRISPRi,CRISPR 介导的转录抑制;crRNA,CRISPR RNA;crRNP,CRISPR 核糖核蛋白;dCas9,核酸酶失活 Cas9;DSB,双链断裂;dsDNA,双链 DNA;dsODN,双链寡脱氧核苷酸;gRNA,向导 RNA;H3K27ac,组蛋白 H3 赖氨酸 27 乙酰化;H3K4me1,组蛋白 H3 赖氨酸 4 单甲基化;LAM-PCR,线性扩增介导的 PCR;LSD1,赖氨酸特异性组蛋白去甲基化酶 1;MCP,MS2 外壳蛋白;MOI,感染复数; p65AD,核因子-κB反式激活亚基激活结构域;PAM,原型间隔区相邻基序;RNAi,RNA干扰;scFV,单链可变片段;sfGFP,超折叠GFP;sgRNA,单向导RNA;ssRNA,单链RNA。
大多数 CRISPR 型 V 核酸酶在富含 T 的 PAM 刺激下切割双链 (ds) DNA 靶标,这限制了它们的靶向范围。在这里,我们鉴定并表征了一个新的型 V RNA 引导核酸酶家族 Cas 12l,它专门识别富含 C 的 (5'-CCY-30) PAM。其 CRISPR 基因座内的基因组织类似于 II-B 型 CRISPR-Cas 9 系统,但序列分析和功能研究均将其确立为一个新的型 V 效应物家族。生化实验表明,Cas 12l 核酸酶在 37 至 52°C 之间发挥最佳功能,具体取决于直系同源物,并优先切割超螺旋 DNA。与其他型 V 核酸酶一样,它表现出由 ssDNA 或 dsDNA 靶标识别触发的附带非特异性 ssDNA 和 ssRNA 切割活性。最后,我们表明,一个家族成员 Asp 2 Cas 12 l 可以在异源细胞环境中发挥作用,这表明这一组新的 CRISPR 相关核酸酶可以被用作基因组编辑试剂。
严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 因其高致病性和侵袭性而对全球构成威胁,在过去 2 年中已导致全球数百万人死亡。时至今日,冠状病毒病 (COVID-19) 大流行仍在威胁生命并引起全球严重担忧。冠状病毒是球形的有包膜病毒,其基因组由约 30 kb 的单链正义 RNA (+ssRNA) 组成,具有 5' 帽和 3' 聚腺苷酸尾巴。典型 CoV 的基因组包含六个或更多开放阅读框 (ORF)。第一个 ORF(ORF1a/b)覆盖整个基因组的约 66%,编码 16 种非结构蛋白(nsp1 – 16),主要参与病毒复制。其余 ORF 覆盖 3' 末端附近基因组的三分之一,编码刺突 (S)、膜 (M)、包膜 (E) 和核衣壳 (N) 蛋白,这些蛋白是病毒形成及其传染性所必需的主要结构蛋白。1 S 糖蛋白的同源三聚体在病毒表面形成刺突,并负责与宿主细胞受体结合。病毒的高传染性是由于这种蛋白质对血管紧张素转换酶 2 (ACE-2) 受体具有高亲和力。2 M 蛋白含有三个跨膜结构域并覆盖核衣壳,形成病毒体的形状并支持膜曲率。E 蛋白参与病毒聚集和释放,也参与病毒致病机制。N 蛋白有两个与病毒基因组结合的结构域,它还能抵消干扰素 (INF) 的抗病毒作用。3
许多炎症关节疾病与CD10蛋白的表达相关,CD10蛋白在炎症和疼痛传播信号中起很大作用。这种促炎性机制是人类肌肉骨骼组织中各种关节的关节软骨降解的主要指标。CD10在间充质干细胞(MSC)中的表达与其免疫调节和软骨保护作用直接相关。因此,该项目着重于开发基于适应性的生物传感器,该生物传感器将检测CD10表达而不会扰动样品。适体是一个小的单链核酸分子,可以折叠成独特的结构,从而使它们能够高特异性与各种分子蛋白靶标结合。这使他们能够检测出大量的高和低丰度分子。该项目的第一步是使用称为SELEX(指数富集对配体的系统演变)的过程为CD10开发高亲和力适体。我们从一个初始的单链RNA库开始,该库包含大约10 14个不同的序列。将RNA文库与溶液中的CD10蛋白一起孵育。然后使用硝酸纤维素滤光片将蛋白-RNA复合物与未经膜的RNA分离。然后,在对RNA进行逆转录和PCR之前,我们将蛋白质与RNA分开。第一轮之后的最终产物包含与CD10蛋白结合的ssRNA分子。我已经完成了2轮SELEX,并有令人鼓舞的结果。此过程将重复大约10次,使我们能够识别与CD10高亲和力结合的RNA适体。这是开发适体CRISPR传感器的关键步骤,因为某些样品的CD10表达较低。
摘要:适体是短的,单链的DNA或RNA(ssDNA或SSRNA)生物分子,可以选择性地与特定受体相连,包括蛋白质,肽,碳水化合物,小分子,危险化学物质和活细胞。在过去的十年中,适体开始从基本研究转向各种工业应用。诊断的创建比临床应用的开发更为普遍,因为改善适体的体内稳定性和药代动力学进行诊断测试不需要重大修改。基于越来越多的注意力,由于体外选择技术的进步,通过指数富集(SELEX)的系统进化,生成适体的助学剂的功效已改善。许多疾病,包括分枝杆菌结核病,treponema pallidum,新颖的冠状病毒,艾滋病毒,粘液等,对人们的福祉揭示了很大的威胁,并在社会上赋予了重要的社会经济能力。因此,对病原体的初始和精确诊断对于及时和成功的治疗至关重要。由于缺乏可靠的探针来识别感染的生物学标志物,在分子和纳米级处检测到人类感染性疾病一直非常困惑。通过指数富集对配体的选择性生长,一组具有高特异性和敏感性称为适体的塑性寡核苷酸,在体外测试(SELEX)。越来越多的药物适体目前是临床前研究或临床试验的主题。随着基于SELEX的Aptamer筛选技术的持续发展,适体应用程序的范围已大大扩展。本文回顾了生物医学中核酸适体的演变,特别强调了它们如何用于诊断传染病。本文讨论了用于治疗包括冠状病毒在内的各种疾病的治疗适体的创建和评估。但是,适体技术的重大状态受到了几种技术限制,这些技术限制阻碍了创新的适体通过诊所的通行,并使适体业务变得更加困难。本综述主要集中在克服障碍的方法上,阻碍了适体在诊断和治疗方面的广泛部署,以及可能会大大扩展适体使用范围并为几位研究人员提供未来方向的策略。
噬菌体,侵入细菌细胞的病毒是生物圈中最丰富的生物。噬菌体包括具有双链DNA(最常见),单链DNA,单链RNA和双链RNA(最不常见)的病毒。大多数病毒体(96%)是尾巴的;其他类型是立方体,丝状或多态性。噬菌体基因组是由于高频率的水平遗传交换和重组而多样化和普遍的镶嵌性。噬菌体可能具有裂解或裂解生命周期。它们附着在特定细菌上,并通过酶内olysins和holins杀死,而不会因宿主特异性而影响共生微生物。有一个恒定的“进化武器竞赛”,导致竞争性细菌噬菌体的进化。正在开发许多多种多样和复杂的细菌防御机制,以抑制噬菌体生命周期的各个阶段。同时,噬菌体也发展为克服这些细菌防御。正在开发基于噬菌体的治疗方法,其中单噬菌体,噬菌体鸡尾酒,噬菌体衍生的酶,噬菌体与抗生素结合使用,而转基因噬菌体可能有用。这对于用多药耐药(MDR)病原体以及去除生物膜的感染治疗感染可能很有用。新生儿(2023):10.5005/jp-journals-11002-0078Keywords: Abi-associated enzymes, Abortive infection, Adsorption block, Bacteriophage, Bacteriophage exclusion system, Biofilms, Bradley's classification, Carjivirus communis , Caudovirales, Chromosomal islands, Contractile tails, Cosmids, CrAssphage, CRISPER-cas bacterial immune system, Darwinian principles, Double-stranded DNA, Destruction of phage DNA after injection, Diversity-generating retroelements, dsDNA, Endolysin, Enterobacteria P4-like prophages, ESKAPE, Evolutionary arms race, Glucosyl-hydroxymethylcytosine, Helper proteins, Human phageome, Hydroxymethylcytosine, Infant, Lactococcus phage c2, Lit activator gol peptide, Long non-contractile tails, Lytic cycle, Lysogenic cycle, Metagenomics, Mosaicism, MS2 coat, Mycoplasma phage P1, Myoviridae, Neonate, Newborn, P2-like prophages, Pasteurella phage F108, Penetration block, Phage display, Phagemid, Phage coevolution, Phage cocktail, Phage terminase small subunit, Phage anti-restriction-induced system, Phage ecology, Podoviridae, Polyphage, Prophage, Prokaryote viruses, Prokaryotic argonautes, Pseudolysogenic cycle, Receptor, Receptor-binding proteins, Restriction-modification systems, RexAB system, Retrons, Short tails, Siphoviridae, ssRNA, Temperate phage, Toxin-antitoxin systems, Transduction,有毒的噬菌体。