群集定期间隔短的短质体重复序列(CRISPR)相关的核酸内切酶已彻底改变了生物技术,因为它们是可编程基因组编辑者的潜力。然而,大多数天然核酸酶及其变体都有局限性。在这里,我们报告了由祖先序列重建(ASR)设计的完全合成的CRISPR-核酸酶(CAS)核酸酶(CAS)核酸酶(CAS)核酸酶(α-Syncas),该核酸酶(ASR)显示出一组可靠且独特的靶向特性,在任何其他已知的CRISPR-CAS Cass 2 System中都找不到。我们表明α-同步是一种无PAM的核酸酶,能够催化DSDNA,ssDNA和SSRNA的RNA引导,特定的裂解。合成酶也能够通过补充DSDNA,ssDNA和SSRNA靶标激活DSDNA,SSDNA和SSRNA的序列非特异性降解。此外,α-同步在人类细胞和细菌中表现出强大的基因组编辑活性。α-同步三元和第四纪复合物的冷冻电子显微镜结构提供了一个框架,以了解其扩展的酶促活性的结构基础。几乎任何核酸序列的可编程多模式靶向的能力将α-同步区分开,这是扩展基于CRISPR的技术的有希望的新工具。
主要关键词