摘要 - 情绪分析在理解公众情绪方面起着至关重要的作用,尤其是在数字通信领域,因为每天都会产生大量的文本数据。本研究深入探讨了情绪分类模型,即朴素贝叶斯分类器 (NBC) 和支持向量机 (SVM),在情绪分析任务中经常遇到的不平衡数据集中的有效性。采用比较分析方法,以来自在线平台的机器人酒店评论数据集作为评估的基础。NBC 和 SVM 模型都经过训练和评估,使用和不使用合成少数过采样技术 (SMOTE),以纠正类别不平衡。性能评估依赖于关键指标,包括准确度、召回率、精确度、f 测量和曲线下面积 (AUC) 来衡量模型的有效性。研究结果表明,SVM 在准确率(SVM:76.88%,NBC:67.43%)、精确率(SVM:92.03%,NBC:86.87%)、召回率(SVM:58.88%,NBC:41.00%)、f 值(SVM:71.78%,NBC:55.63%)和 AUC(SVM:0.907,NBC:0.961)方面均优于 NBC。引入 SMOTE 后,两种模型的性能均显著提升,尤其是在解决类别不平衡问题方面。虽然 NBC 在精确率和召回率指标上表现更为均衡,但 SVM 在情感分类任务中展现出更高的准确率和预测能力。这些发现强调了算法选择和预处理技术在优化情感分析性能方面的关键作用,从而为从业者和研究人员提供了宝贵的见解。
摘要:建筑信息建模(BIM)的结合带来了土木工程的重大进步,增强了项目生命周期的效率和可持续性。激光扫描等高级3D点云技术的利用扩展了BIM的应用,尤其是在操作和维护中,促使探索自动化解决方案以进行劳动密集型点云建模。本文介绍了监督机器学习(特别是支持向量机)的演示,用于分析和分割3D点云,这是3D建模的关键步骤。对点云语义分割工作流进行了广泛的审查,以涵盖关键元素,例如邻域选择,特征提取和特征选择,从而为此过程开发了优化的方法。在每个阶段都实施各种策略,以增强整体工作流程并确保弹性结果。然后使用来自桥梁基础结构场景的不同数据集评估该方法,并将其与最先进的深度学习模型进行了比较。调查结果强调了在精确细分3D点云时监督机器学习技术的有效性,超过了较小的培训数据集的深度学习模型,例如PointNet和PointNet ++。通过实施高级分割技术,要点对点云的3D建模所需的时间有所减少,从而进一步提高了BIM过程的效率和有效性。
在癫痫的预测中,根据脑电图的目视检查,使用了自动癫痫发作检测系统,该系统充当医生的第二意见工具。使用带有EEG信号的SVM技术提出了一种自动癫痫发作检测,以准确预测癫痫发作检测。所提出的技术在节之后完成概述构想。第2节处理具有不同技术的可用方法。第3节用提出的方法处理以克服已经可用的系统中的问题。第4节通过SVM分类器管理提出的系统的完整过程。第5节通过使用带有EEG信号的SVM技术自动癫痫发作检测获得了结果。提议方法的结论遵循第6节。
摘要:脑癌在老年人和年轻人中最为常见,并且对老年人和年轻人都可能是致命的。如果能迅速诊断和治疗,脑肿瘤可以更好地治愈。在处理医学图像时,深度学习方法对于帮助人类诊断各种疾病至关重要。对脑肿瘤进行分类是一个必不可少的步骤,它在很大程度上依赖于医生的经验和培训。一个用于检测和分类这些肿瘤的智能系统对于使用 MRI(磁共振成像)图像进行脑肿瘤的非侵入性诊断至关重要。这项工作提出了一种基于 CNN 的新型混合深度学习结构,通过 MRI 扫描区分三种不同类型的人脑肿瘤。本文提出了一种使用深度学习和 CNN 进行分类的双重方法。第一种方法将用于模式分类的 SVM 无监督分类与用于特征提取的预训练 CNN(即 SqueezeNet)相结合。第二种方法将监督式软最大分类器与精细调整的 SqueezeNet 相结合。为了评估所提方法的有效性,使用脑部 MRI 扫描分析了总共 1937 张胶质瘤肿瘤图像、926 张脑膜瘤肿瘤图像、926 张垂体肿瘤图像和 396 张正常脑部图像。根据实验结果,精细调整的 SqueezeNet 模型的准确率为 96.5%。然而,当使用 SqueezeNet 作为特征提取器并应用 SVM 分类器时,识别准确率提高到 98.7%。
摘要 癫痫发作是发生在中枢神经系统中的癫痫的一部分,会导致大脑活动异常。脑电图 (EEG) 信号记录主要用于癫痫发作检测过程。癫痫发作的检测是患者进一步治疗的关键部分。本文提出了一种使用单通道 EEG 信号进行癫痫发作检测的多视图 SVM 模型。在本实验中,提取了 EEG 数据的两个视图,(1) 使用独立成分分析 (ICA) 的时域特征和 (2) 在频域中获得功率谱密度。提取的特征已输入到多视图 SVM 分类模型。在本研究中,单通道 EEG 数据集用于癫痫发作检测。已经估计了性能估计参数,即准确度、灵敏度、特异性、F1 分数和 AUC 值,以评估所提出的模型。该模型使用 k 倍交叉验证对 A vs E 和 B vs E 集上的癫痫和非癫痫进行了分类,准确率超过 99%。使用相同特征,多视图 SVM 获得的分类准确率比单视图 SVM 高 1-4%。此外,还将所提出的模型与现有的单视图 SVM 模型进行了比较。观察到,与单视图 SVM 模型相比,多视图 SVM 模型在相同特征上的表现明显更好。
信号由在不同情况下组合的多个频率组成。离散小波变换 (DWT) 用于使用一系列高通/低通滤波器将信号分解为不同的频带。或者,使用功率谱密度 (PSD) 来获取频谱以及每个频率的功率分布。统计特征来自 DWT 和 PSD。然后,PCA 用于降维,并且在 SVM 分类器的情况下仅将得到的数据用于情绪分类,因为我们需要尽可能多的数据来进行深度学习。所有这些都是为了从分类器中提取最大性能并最小化所需的计算资源,然后将信号分解为组成频率并得出表征整个信号的相关统计特征。
早期肺炎的早期诊断对于增加生存机会并减少患者的恢复时间至关重要。胸部X射线图像是实践中最广泛使用的方法,它具有挑战性地进行分类。我们的目的是开发一种机器学习工具,该工具可以准确地将图像分类为属于正常或受感染的个体。支持向量机(SVM)很有吸引力,因为二进制分类可以表示为优化问题,特别是作为二次不约束的二进制二进制优化(QUBO)模型,而这又自然地映射到Ising模型上,从而使退火 - 级别,阶级,量子,量子和杂种 - 以探索有吸引力的方法。在这项研究中,我们进行了不同方法之间的比较:(1)SVM(LIBSVM)的经典最新实施; (2)用经典求解器(Gurobi)求解SVM,有或没有分解; (3)用模拟退火解决SVM; (4)用量子退火求解SVM(D-WAVE); (5)使用Graver增强多种子算法(GAMA)求解SVM。使用模拟退火和量子退火,尝试了几个不同数量的graver元素和许多种子。我们发现模拟的退火和GAMA(带有模拟退火)是可比的,可以快速提供准确的结果,与LIBSVM竞争,并且优于Gurobi和Quarobi和Quantum退火。
摘要 — 本项目尝试对亚马逊的短评论和长评论进行情绪分析,并报告其对监督学习支持向量机 (SVM) 模型的影响,以此作为虚假评论分类的桥梁。首先,通过与朴素贝叶斯、逻辑回归和随机森林模型进行比较来评估 SVM 模型,并证明其在准确率 (70%)、精确率 (63%)、召回率 (70%) 和 F1 分数 (62%) 方面更胜一筹(第二个假设)。超参数调整提高了 SVM 模型的情绪分析准确率(准确率为 93%),然后改变评论长度会影响模型的性能,这验证了评论长度会影响分类器(第一个假设)。其次,在虚假评论数据集上进行虚假评论分类,准确率为 88%,而两个数据集的合并子集的准确率为 84%。关键词 — 虚假评论检测、情绪分析、自然语言处理、机器学习 (ML) 监督学习
a b s t r a c t全球死亡率是心脏病,而早期鉴定对于限制疾病的发展至关重要。早期检测心血管疾病的方法有助于确定高风险人士应该发生的进展,从而降低了风险。主要目标是通过在心脏情况下识别异常来挽救生命,这将通过识别和分析从心脏信息中产生的原始数据来执行。机器学习可以提供有效的方法来做出决策和创建准确的预测。机器学习技术已在医疗业务中广泛使用。在拟议的研究中提供了一种独特的机器学习技术,以预测心脏病。计划的研究利用了Kaggle的开源心脏病数据集。用于机器学习预测的混合算法是许多以前旨在提高效率并产生改善结果的方法的逻辑混合物。提出的工作引入了一种混合方法,该方法采用分类概念进行预测分析。我们使用实际患者数据来构建一种预测心脏病的混合技术。KNN和SVM分类技术。jupyter笔记本用于实现此混合方法。一种混合技术在心脏病的预测分析中优于其他算法。1。简介从一系列原始数据集收集可用信息和模式的实践通常称为数据挖掘。它包括使用一种或多种技术分析大量数据和发现趋势或模式。它在各种情况下都有用,包括分析,研究和医疗保健。因为数据挖掘是一种调查方法,而且医疗保健的许多出色的早期预测系统已经从医疗数据集中发展,这可以检测大量数据的趋势(J. H. Joloudari等,2019)。提高
头痛、中风和阿尔茨海默病是人类大脑中的主要问题。在这种疾病中,癫痫是另一种大脑疾病,在人口大国中偶然发生。癫痫是一种影响儿童和成年人的常见神经系统疾病。早期诊断和治疗与降低患病率和死亡率有关。尤其是如果已经确认了癫痫的类型并开始适当的治疗。脑电图仍然是最高质量的诊断方法。脑电图传感器获取的信号是非直接的,其趋势复杂。因此,识别和分离获取的脑电图信号中的瞬间变化是一个非常复杂的过程(Karthik 等人,2020 年)。阴极安装在人头皮上,脑电图信号通过各种通道捕获。从癫痫发作区域捕获的信号称为局灶性脑电图信号,从癫痫发作区域的另一部分捕获的信号称为非局灶性脑电图信号。因此,有必要提出一种自动识别和表征局灶性和非局灶性脑电图信号的系统,以继续癫痫治疗和进一步治疗。癫痫发作会导致大脑区域出现异常功能,这些功能是从大脑中捕获的,局灶性和非局灶性的识别是