摘要 - 情绪分析在理解公众情绪方面起着至关重要的作用,尤其是在数字通信领域,因为每天都会产生大量的文本数据。本研究深入探讨了情绪分类模型,即朴素贝叶斯分类器 (NBC) 和支持向量机 (SVM),在情绪分析任务中经常遇到的不平衡数据集中的有效性。采用比较分析方法,以来自在线平台的机器人酒店评论数据集作为评估的基础。NBC 和 SVM 模型都经过训练和评估,使用和不使用合成少数过采样技术 (SMOTE),以纠正类别不平衡。性能评估依赖于关键指标,包括准确度、召回率、精确度、f 测量和曲线下面积 (AUC) 来衡量模型的有效性。研究结果表明,SVM 在准确率(SVM:76.88%,NBC:67.43%)、精确率(SVM:92.03%,NBC:86.87%)、召回率(SVM:58.88%,NBC:41.00%)、f 值(SVM:71.78%,NBC:55.63%)和 AUC(SVM:0.907,NBC:0.961)方面均优于 NBC。引入 SMOTE 后,两种模型的性能均显著提升,尤其是在解决类别不平衡问题方面。虽然 NBC 在精确率和召回率指标上表现更为均衡,但 SVM 在情感分类任务中展现出更高的准确率和预测能力。这些发现强调了算法选择和预处理技术在优化情感分析性能方面的关键作用,从而为从业者和研究人员提供了宝贵的见解。
主要关键词