摘要 本研究的新发现揭示了情绪唤起与神经功能大脑连接测量之间的高度关联。为此,使用由图论分离(聚类系数、传递性、模块化)和大脑网络集成(全局效率、局部效率)测量驱动的支持向量机(SVM)对对比离散的情绪状态(快乐与悲伤、有趣与厌恶、平静与兴奋、平静与愤怒、恐惧与愤怒)进行分类。从名为 DREAMER 的公开数据库下载由短时间视频影片片段介导的情绪 EEG 数据。已经检查了皮尔逊相关性(PC)和斯皮尔曼相关性,以估计整个皮质中相对较短(6 秒)和较长(12 秒)不重叠 EEG 段之间的统计依赖关系。然后,将编码为图形的相应大脑连接根据两个不同的阈值(60% 最大值和平均值)转换为二进制数。根据变量(依赖性估计、片段长度、阈值、网络测量),使用单因素方差分析和逐步逻辑回归模型,获得对比情绪之间的统计差异。当将 PC 应用于较长的片段并按照特定阈值作为平均值时,组合整合测量可提供最高的分类准确率 (CA) (75.00% 80.65%)。分离测量也提供了有用的 CA (74.13% 80.00%),而两种测量的组合则没有。结果表明,即使分离和整合测量都因视频观看过程中神经递质释放导致的视听刺激的唤醒分数而变化,离散的情绪状态仍以平衡的网络测量为特征。
摘要:由于其固有的优势,例如零污染,灵活性,可持续性和高可靠性,太阳能光伏发电引起了重大的兴趣。确保PV功率设施的有效运行在精确的故障检测中取决于。这不仅可以增强其可靠性和安全性,而且还可以优化利润并避免昂贵的维护。但是,使用通用保护设备的PV系统直流电(DC)侧的故障检测和分类带来了重大挑战。这项研究深入研究了对光伏(PV)阵列中复杂断层的探索和分析,尤其是那些表现出类似I-V曲线的阵列,这是PV故障诊断的重大挑战,在先前的研究中未充分解决。本文探讨了支持向量机(SVM)和极端梯度提升(XGBoost)的设计和实施,重点是它们有效地识别小型PV阵列中各种故障状态的能力。这项研究扩大了将优化算法的使用,特别是蜜蜂算法(BA)和粒子群优化(PSO),目的是提高基本SVM和XGBoost分类器的性能。优化过程涉及完善机器学习模型的超参数,以实现故障分类的卓越精度。发现蜜蜂算法的弹性和效率的有说服力的案例。使用用于优化SVM和XGBOOST分类器以检测PV阵列中的复杂故障时,蜜蜂算法显示出显着的精度。相比之下,使用PSO算法进行细调的分类器表现出相对较低的性能。这些发现强调了蜜蜂算法在光伏系统中故障检测中提高分类器准确性的潜力。
通过分析主要火灾因素来确定森林火灾概率水平,可以为森林经理提供对诸如防火策略,燃油管理,消防安全措施,紧急计划以及消防团队安置等问题做出关键决策的基础。主要影响火灾因素,包括植被因素,地形因素,气候因素以及与某些特征(如道路和住宅区)的邻近性,被认为是产生森林火灾概率图。机器学习(ML)算法已成为预测森林射击概率的有效工具。这项研究旨在通过使用与地理信息系统(GIS)Tech Niques集成的两个常用ML模型(LR)和支持向量机(SVM)来生成森林火灾概率图。这项研究是在位于Türkiye的地中海城市安塔利亚市的Elale Forest Enterprise Enterprise(FEC)实施的。在研究中,影响火灾的因素是树种,冠状,树阶段,坡度,方面以及通往道路的距离。 在模型的训练阶段考虑了从2001年至2021年在FEC中发生的森林大火。 使用曲线(AUC)值的区域(AUC)值验证了火灾概率图的精度。 由于执行ML模型,在地图上进行了47 086点的估计,该估计分为五个火灾概率水平(非常高,高,中,中,低和非常低)。 根据概率图,超过一半的森林在研究区域具有很高/高的火灾概率水平。在研究中,影响火灾的因素是树种,冠状,树阶段,坡度,方面以及通往道路的距离。在模型的训练阶段考虑了从2001年至2021年在FEC中发生的森林大火。使用曲线(AUC)值的区域(AUC)值验证了火灾概率图的精度。由于执行ML模型,在地图上进行了47 086点的估计,该估计分为五个火灾概率水平(非常高,高,中,中,低和非常低)。根据概率图,超过一半的森林在研究区域具有很高/高的火灾概率水平。结果表明,LR模型生成的火概率图的准确性更好(AUC = 0.845),比SVM模型生成的MAP的准确性(AUC = 0.748)。
已经对数据挖掘在包括CAD在内的疾病诊断中的应用进行了各种研究; [9,10]将建议的模型与基于PSO的自适应神经融化推理系统(PSO -ANFIS)进行了比较。结果表明,建议的模型优于PSO -ANFIS模型。建议的模型还具有2个重要好处:(1)它很快学习,(2)响应迅速。对于大型准确的数据集,快速学习和快速响应能力的重要性很重要。[11] Jackins等。进行了一项研究,以找到可用数据集中诊断糖尿病,冠心病和癌症的模型。他们使用幼稚的贝叶斯分类和随机森林(RF)分类算法进行数据集的分类。结果表明,三种疾病的RF模型的准确性高于幼稚贝叶斯分类器的精度值。[12] Das等。使用统计分析系统,引入了一种诊断心脏病的方法。神经网络集合方法位于提议系统的中心。从从克利夫兰心脏病数据库中获得的数据中获得的分类准确性为89.01%。另外,在心脏病的诊断中分别获得了80.95%和95.91%的敏感性和特异性。[14] Dutta等。[13] Olaniyi和Oyedotun提出了一个基于人工神经网络(ANN)的三步模型来诊断心绞痛,其精度为88.89%。提出了具有卷积层的有效神经网络。他们提出的模型在预测冠心病方面的准确性达到了77%。该模型还能够比传统方法(例如支持向量机(SVM)和RFS)更准确地预测负面案例。[15]
在本文中,我们引入了一种深度脉冲延迟反馈储存器 (DFR) 模型,将 DFR 与脉冲神经元相结合:DFR 是一种新型的循环神经网络 (RNN),能够捕捉时间序列中的时间相关性,而脉冲神经元是节能且符合生物学原理的神经元模型。引入的深度脉冲 DFR 模型具有节能的特点,并且能够分析时间序列信号。介绍了这种深度脉冲 DFR 模型的相应现场可编程门阵列 (FPGA) 硬件实现,并评估了底层的节能和资源利用率。探索了各种脉冲编码方案,并确定了用于分析时间序列的最佳脉冲编码方案。具体来说,我们利用动态频谱共享 (DSS) 网络中基于 MIMO-OFDM 的认知无线电 (CR) 中的频谱占用时间序列数据来评估所引入模型的性能。在 MIMO-OFDM DSS 系统中,可用频谱非常稀缺,高效利用频谱至关重要。为了提高频谱效率,第一步是确定现有用户未使用的频段,以便次要用户 (SU) 可以使用它们进行传输。由于信道相关性以及用户活动,不同时隙中频带的频谱占用行为存在显著的时间相关性。所引入的深度尖峰 DFR 模型用于捕获频谱占用时间序列的时间相关性,并预测未来时隙中潜在的频谱接入的空闲/繁忙子载波。评估结果表明,与传统的基于能量检测的策略和基于学习的支持向量机(SVM)相比,我们引入的模型在接收者操作特性(ROC)曲线上实现了更高的曲线下面积(AUC)。
摘要: - 信用风险评估和欺诈检测是金融业至关重要的任务,对于维护金融组织的合法性和可持续性至关重要。传统方法通常在准确评估风险和及时地检测欺诈活动方面缺乏。近年来,机器学习已成为增强这些过程的强大工具,利用了交易统计数据的巨大维度和卓越的ALGO来做出更明智的决策。本研究论文探讨了ML技术在金融交易中的信用风险评估和欺诈检测中的用法。本文概述了准确的风险评估和金融交易中欺诈检测的重要性,并介绍了机器学习在应对这些挑战中的作用。进行了全面的文献综述,以分析该领域的现有方法,算法和研究趋势。讨论了数据采集和预处理技术,强调了清洁和相关数据对于模型培训的重要性。探索功能工程策略以从金融交易数据中提取有意义的信息并增强机器学习模型的预测能力。 检查了适合信用风险评估和欺诈检测的各种机器学习算法,包括LR,SVM,RF,DTS和DNN。 通过讨论用于提高效率的评估和集合方法的模型指标来评估这些技术的疗效,并重点介绍了准确性,精度,召回和ROC-AUC等指标。探索功能工程策略以从金融交易数据中提取有意义的信息并增强机器学习模型的预测能力。检查了适合信用风险评估和欺诈检测的各种机器学习算法,包括LR,SVM,RF,DTS和DNN。通过讨论用于提高效率的评估和集合方法的模型指标来评估这些技术的疗效,并重点介绍了准确性,精度,召回和ROC-AUC等指标。本文提出了案例研究和实验结果,说明了机器学习模型在现实世界情景中的应用,从而强调了它们在改善风险评估和欺诈检测过程中的有效性。此外,还讨论了诸如数据集,模型不平衡的难度以及对法规的遵守,以及该领域的潜在研究方向和未来趋势。总而言之,这项研究强调了信用风险评估中机器学习和金融交易中欺诈检测的变革潜力。通过利用先进的算法和数据驱动的方法,金融机构可以增强其决策过程,减轻风险和保护欺诈活动,最终为更安全,更稳固的金融生态系统做出贡献。关键字:安全,财务生态系统,Roc-Auc。,欺诈性
摘要:机器学习(ML)技术的应用是协助诊断复杂疾病的可靠方法。最近的研究将肠道微生物的组成与自闭症谱系障碍(ASD)的存在有关,但到目前为止,结果主要是矛盾的。这项工作建议使用机器学习研究肠道微生物组组成及其在ASD早期诊断中的作用。我们使用肠道微生物组成分的公开数据,将支持向量机(SVM),人工神经网络(ANN)和随机森林(ANN)和随机森林(RF)算法分类为神经型(NT)或具有ASD的受试者。天真的贝叶斯,k-neart邻居,合奏学习,逻辑回归,线性回归和决策树也经过训练和验证;但是,提出的表现最好的性能和解释性。使用SAS VIYA软件平台开发了所有ML方法。使用16S rRNA测序技术确定微生物组的组成。ML的应用产生的分类准确性高达90%,灵敏度为96.97%,特异性较高达到85.29%。在ANN模型的情况下,与第一个数据集对NT受试者进行分类时不会发生任何错误,这表明与传统测试和基于数据的方法相比,分类结果显着。使用两个数据集重复这种方法,一个来自美国,另一个来自中国,导致了类似的发现。所获得的模型中的主要预测指标在分析的数据集之间有所不同。从分析的数据集中确定的最重要的预测因素是细菌,lachnospira,anaerobutyricum和ruminococcus torques。值得注意的是,在每个模型中的预测因子中,由于其相对丰度较低,因此存在细菌在微生物组组成中通常被认为是微不足道的。这种结果增强了对微生物组对ASD发展的影响的常规理解,在这种情况下,微生物群的组成的不平衡会导致宿主 - 微生物稳定的破坏。考虑到以前的几项研究集中在最丰富的属,并且被忽略了较小的(并且经常在统计学上显着)微生物群落,因此对此类社区的影响进行了很差的分析。基于ML的模型表明,更多的研究应集中在这些不太丰富的微生物上。一个新的假设解释了这一领域的矛盾结果,并提倡对可能不会表现出统计学意义的变量进行更深入的研究。获得的结果似乎有助于解释有关ASD的矛盾发现及其与肠道菌群组成的关系。虽然某些研究将杆状杆菌/杆菌的比例较高,而其他研究则相反。这些差异与微生物组组成中的少数族裔有密切相关,这在人群之间可能有所不同,但具有相似的代谢功能。因此,在ASD表现中,杆菌/杆菌的比率可能不是决定因素。
众所周知,抽象的癌症治疗会引入心脏毒性,对结局产生负面影响和生存。识别患有心力衰竭风险(HF)的癌症患者对于改善癌症治疗结果和安全性至关重要。这项研究检查了机器学习(ML)模型,以使用电子健康记录(EHR)(包括传统的ML,时间感知的长期短期记忆(T-LSTM)(T-LSTM)和大型语言模型(LLMS),使用从结构性医疗代码中得出的新型叙事特征。我们确定了来自佛罗里达大学健康的12,806名患者,被诊断出患有肺部,乳腺癌和结直肠癌,其中1,602名患者在癌症后患有HF。LLM,GatorTron-3.9b,达到了最佳的F1分数,表现优于传统的支持向量机39%,T-LSTM深度学习模型乘以7%,并且广泛使用的变压器模型BERT,5.6%。分析表明,所提出的叙事特征显着提高了特征密度和提高的性能。引言癌症和心血管疾病是美国(美国)的前2个死亡原因,它们通常在多个层次上共存并相交。1-3癌症是全球重要的公共卫生问题,也是美国第二常见的死亡原因。在2023年,美国有1,958,310例新的癌症病例,导致609,820例死亡。4肺癌和支气管癌是最致命的癌症形式,估计导致127,070例死亡,其次是结直肠癌,估计有52,550例死亡。Yang等。 angraal等。 Yu等。Yang等。angraal等。Yu等。Yu等。乳腺癌是最常见的癌症诊断,估计有30万人。已知许多癌症治疗方式,例如化学疗法和放射疗法,都引入心脏毒性并可能导致心脏故障,这是癌症患者疾病和死亡的重要原因。5例癌症患者经常面临双重挑战,即不仅要管理其原发性癌症,而且还涉及癌症治疗的潜在心脏毒性作用。6即使不是直接心脏毒性,癌症治疗也会导致代谢,能量平衡,贫血和其他生理压力源的变化,这些胁迫可能会加速或发现先前存在的患者心脏病的倾向。为了解决这个问题,心脏肿瘤学是结合心脏病学和肿瘤学知识以识别,观察和治疗癌症患者心血管疾病的越来越感兴趣的领域。HF的发生率显着有限,对癌症的治疗方案显着影响,并对生活质量产生负面影响。使用电子健康记录(EHR)来识别有HF风险的癌症患者,以帮助决策并提高癌症治疗的安全性。通常将HF的预测作为二进制分类任务进行处理,该任务是使用机器学习模型来对其进行访问的,以将给定的个体分类为正(以HF风险)或负面(无HF风险)类别。先前的研究探索了使用EHR来使用传统的机器学习模型和基于神经网络的深度学习模型来预测HF的风险。混合神经网络11-13,包括混合动力7系统地探索了传统的机器学习模型,包括逻辑回归(LR),随机森林(RF),支持向量机(SVMS)和梯度增强(GB),具有单速和术语频率内文档频率(TF-IDF)特征编码策略。8开发了使用LR,RF,GB和SVM的HF患有HF的门诊病人的死亡率和住院模型。9探索了英国生物库的基因组学数据以进行心力衰竭预测。在这些先前的研究中,来自EHR的结构化医疗法规通常表示为具有零值和零值的向量,其中零表示患者没有相应的特征,而患者表示患者具有相应的特征,称为单次编码。然而,在单次编码期间,EHR的事实结构被简化为向量表示,而无需考虑时间关系。为了捕获事件时间结构,研究人员探索了深度学习方法,例如使用长期短期记忆(LSTM)10实施的复发性神经网络。
无监督的学习是一种机器学习方法,它处理了未标记的数据,与监督学习不同的是在其中标记了特定类别或结果的数据。无监督的学习算法在数据中找到模式和关系,而没有事先了解其含义,从而自行发现隐藏的群体和模式。该算法没有预定义的标签或类别,因此它必须使用诸如聚类,降低性降低或异常检测等技术基于固有模式来弄清楚如何根据固有模式进行分组或组织数据。此过程可以揭示从标记的数据集中显而易见的数据中的见解。例如,购物中心可以根据购买行为等参数将无监督的学习用于分组客户。该算法的输入包括可能包含嘈杂数据,缺失值或未知数据的非结构化数据。有三种用于无监督数据集的算法的主要类型:聚类,关联规则学习和降低维度。聚类是一种基于它们的相似性,用于无监督的机器学习中,将未标记的数据分组为群集。聚类的目的是在数据中识别数据中的模式和关系,而无需先验其含义。这些算法用于将原始的,未分类的数据对象处理为基团,例如根据其物种将大象,骆驼和母牛等动物分组。给定的文本是关于聚类算法,关联规则学习,降低维度,无监督学习的挑战以及无监督学习的应用。2。3。无监督的机器学习算法在没有预定义标签或类别的数据中识别数据中的模式和分组。应用程序包括欺诈检测,网络安全,设备预防,建议系统,图像和文本聚类,社交网络分析,天文学和气候科学。无监督学习的类型包括:1。聚类:分组相似的数据点。降低尺寸:在保留信息的同时降低功能。异常检测:识别偏差模式或异常值。4。建议系统:根据用户行为建议产品。无监督学习的挑战包括缺乏标记的数据,这可能会使评估变得困难,并且对数据质量的敏感性,这可能会影响算法性能。无监督的学习用于NLP任务,例如主题建模,文档群集和言论部分标记。它不同于监督学习,算法学会根据标记的培训数据将输入数据映射到所需的输出值。前8个无监督的机器学习算法是:[插入算法列表]此博客文章旨在帮助用户确定哪种算法最适合其解决问题的需求。k-means聚类,PCA,自动编码器和DBN算法用于无监督的机器学习:比较分析机器学习算法在数据分析中起着至关重要的作用,而无监督的学习是该领域的重要方面。我们将提供一个简短的概述,示例和详细信息,以了解哪些算法更适合特定类型的数据集。在本文中,我们将探讨四种流行的无监督机器学习算法:K-均值聚类,主成分分析(PCA),自动编码器和深度信念网络(DBN)。k-means聚类是用于数据分割的最流行的无监督的机器学习算法之一。它通过将数据集分区为K群集来工作,在K群集中,每个群集的均值是从训练数据中计算出来的。通常通过实验确定簇k的数量。k-均值聚类由于其易于理解和实施而具有优势,并且缺乏对数据基础分布的假设。但是,它可以对初始化值敏感,而不是对大数据集的可扩展性,并且与分类数据无法很好地工作。PCA算法用于降低维度,通常与K-均值聚类结合使用。它找到了一个较低维的空间,其中包含原始数据集中的大多数变化,可以通过降低维度而不会丢失太多信息来帮助使用高维数据集。PCA可以提高许多机器学习算法的性能,因为它们通常对维度敏感。但是,它在计算上可能很昂贵,并且可能不会总是降低维度的情况而不会丢失信息。自动编码器算法是一种用于无监督学习的神经网络。它通过获取输入数据集并将其编码为隐藏层,然后将编码数据与原始输入数据集进行解码和比较。它也无法与分类数据合作。如果两组之间有很高的相似性,则编码器已正确完成了其作业。自动编码器可以在数据中学习复杂的模式,但是如果编码器和解码器不够相似,则可能在计算上昂贵。深度信念网络(DBN)算法是一种用于无监督学习的深度学习算法。它创建了一个层的层次结构,其中每个层由多个神经元组成,从连接到原始数据集的输入层开始,并以产生最终输出的神经元组成的输出层结束。dbn可以学习数据中的复杂模式,但需要广泛的培训数据和计算资源。dbns根据所需的监督学习类型用于分类或回归。他们的快速训练时间是一个重要的优势,因为它们仅在输入到输出层的一个方向上训练。只要存在某些功能信息,它们也可以在有限的标记数据中表现良好。但是,DBN具有限制,例如大量的培训数据和需要大量的计算能力进行培训。此外,他们在分类数据上挣扎。卷积神经网络(CNN)是无监督和监督学习问题的流行选择,因为它们在数据集之间学习复杂的关系的能力。它们是通过将输入图像拆分到小窗口中的,然后将其通过多个执行卷积操作的神经元的层。此过程使CNN能够产生准确的预测,并且只能使用反向传播来快速训练。支持向量机(SVM)是用于无监督和监督学习问题的另一种机器学习算法。它们通过在高维空间中构建超平面而起作用,其中所有训练数据点位于一侧,目标是找到最佳的超平面,以对所有培训数据点进行分类。CNN和SVM都提供了诸如低维输入空间和快速培训时间之类的优点。但是,它们也有缺点,包括对大型数据集的高计算要求以及处理分类数据的局限性。对于有兴趣进一步探索这些算法的人,下面提供了Python代码参考。如果您对其他流行的AI和数据科学主题有建议,请随时让我们知道!