摘要: - 信用风险评估和欺诈检测是金融业至关重要的任务,对于维护金融组织的合法性和可持续性至关重要。传统方法通常在准确评估风险和及时地检测欺诈活动方面缺乏。近年来,机器学习已成为增强这些过程的强大工具,利用了交易统计数据的巨大维度和卓越的ALGO来做出更明智的决策。本研究论文探讨了ML技术在金融交易中的信用风险评估和欺诈检测中的用法。本文概述了准确的风险评估和金融交易中欺诈检测的重要性,并介绍了机器学习在应对这些挑战中的作用。进行了全面的文献综述,以分析该领域的现有方法,算法和研究趋势。讨论了数据采集和预处理技术,强调了清洁和相关数据对于模型培训的重要性。探索功能工程策略以从金融交易数据中提取有意义的信息并增强机器学习模型的预测能力。 检查了适合信用风险评估和欺诈检测的各种机器学习算法,包括LR,SVM,RF,DTS和DNN。 通过讨论用于提高效率的评估和集合方法的模型指标来评估这些技术的疗效,并重点介绍了准确性,精度,召回和ROC-AUC等指标。探索功能工程策略以从金融交易数据中提取有意义的信息并增强机器学习模型的预测能力。检查了适合信用风险评估和欺诈检测的各种机器学习算法,包括LR,SVM,RF,DTS和DNN。通过讨论用于提高效率的评估和集合方法的模型指标来评估这些技术的疗效,并重点介绍了准确性,精度,召回和ROC-AUC等指标。本文提出了案例研究和实验结果,说明了机器学习模型在现实世界情景中的应用,从而强调了它们在改善风险评估和欺诈检测过程中的有效性。此外,还讨论了诸如数据集,模型不平衡的难度以及对法规的遵守,以及该领域的潜在研究方向和未来趋势。总而言之,这项研究强调了信用风险评估中机器学习和金融交易中欺诈检测的变革潜力。通过利用先进的算法和数据驱动的方法,金融机构可以增强其决策过程,减轻风险和保护欺诈活动,最终为更安全,更稳固的金融生态系统做出贡献。关键字:安全,财务生态系统,Roc-Auc。,欺诈性
主要关键词