随着越来越多的人将互联网用于电子商务和其他金融交易,在线犯罪的数量无疑增加了。已经创建了机器学习算法来检测在线购买中的付款欺诈以解决该问题。这项研究对不同的元启发式优化方法进行了彻底的比较检查。这些是粒子群优化(PSO)和遗传算法(GA)。它们用于优化三个机器学习算法的曲线(AUC)下的接收器操作特性(ROC)区域,即X级升级,随机森林分类器和轻梯度增强机。由于研究的数据是不平衡的,因此确定的指标为ROC AUC。PSO为找到最佳解决方案提供了一致的条件。根据我们的实验,PSO在不包含种群歼灭策略的情况下,可以在不同的情况下取得最大的结果,这些情况与GA不同,这是找到最佳解决方案的一致条件。如果不包括人口歼灭策略,PSO可以在各种情况下取得最大的成果。调查结果表明,随机森林分类器在高参数调谐过程之前和之后提供了最高的ROC AUC值,使用PSO时得分为88.69%。
主要关键词