稀疏的高斯过程。在稀疏的高斯过程近似过程中已经进行了一系列工作,可以追溯到Snelson和Ghahramani(2006),Qui〜nonero-Candela和Rasmussen(2005)等。这些稀疏方法中的大多数都依赖于一个汇总的一组,称为诱导点,主要是选择这些点的确切方式。在Titsias(2009)中首先考虑了诱导点的变异学习,并被证明会导致显着的性能提高。而不是在非变化稀疏模型中使用近似边缘的GP可能性,而是在确切的GP边际可能性上的下限被得出并用作训练目标。与我们工作相关的另一种方法是Hensman等人的随机变异方法。(2013),作者提出了一个稀疏模型,除了降低GP复杂性外,还可以在小型批次中训练,从而使(极其)大型数据集使用GP模型。
为生物搜索中使用的显微镜图像仍然是一个重要的挑战,尤其是对于跨越数百万图像的大规模实验。这项工作探讨了经过越来越较大的模型骨架和显微镜数据集训练时,弱监督的clasifirers和自我监管的蒙版自动编码器(MAE)的缩放属性。我们的结果表明,基于VIT的MAE在一系列任务上的表现优于弱监督的分类器,在召回从公共数据库中策划的已知生物学关系时,相对实现的相对效果高达11.5%。此外,我们开发了一种新的通道敏捷的MAE架构(CA-MAE),该体系结构允许在推理时输入不同数字和通道的图像。我们证明,在不同的实验条件下,在不同的实验条件下,CA-MAE通过推断和评估在显微镜图像数据集(Jump-CP)上有效地概括了,与我们的训练数据(RPI-93M)相比,通道结构不同。我们的发现促使人们继续研究对显微镜数据进行自我监督学习,以创建强大的细胞生物学基础模型,这些模型有可能促进药物发现及其他方面的进步。与此工作发布的相关代码和选择模型可以在以下网址找到:https://github.com/ recursionpharma/maes_microscopy。
摘要:与大规模硅制造兼容的硅光子学是一个破坏性的光子平台,表明对行业和研究领域(例如量子,神经形态计算,LIDAR)具有重要意义。尖端应用,例如高容量相干的光学通信和杂差激元,已升级对集成窄线宽激光源的需求。为此,这项工作旨在通过开发高性能混合III-V/硅激光来满足这一要求。开发的集成激光器利用单个微孔谐振器(MRR),演示了超过45 dB的侧模式抑制比(SMSR)的单模操作,激光输出功率高达16.4 mW。远离需要多个复杂控制的当前混合/异质激光体系结构,开发的激光体系结构仅需要两个控制参数。重要的是,这是通过降低表征这些激光器的复杂性来简化工业采用的。通过简洁的结构和控制框架,实现了2.79 kHz的狭窄激光线宽,低相对强度噪声(RIN)达到-135 dB/hz。此外,在测量10 dB的信噪比(SNR)的情况下,证明了12.5 GB/s的光学数据传输。
我们建议使用二维 Penning 阱阵列作为量子模拟和量子计算的可扩展平台,以捕获原子离子。这种方法涉及将定义静态电四极子位置的微结构电极阵列放置在磁场中,每个位置捕获单个离子并通过库仑相互作用与相邻离子耦合。我们求解此类阵列中离子运动的正常模式,并推导出即使在存在陷阱缺陷的情况下也能实现稳定运动的广义多离子不变定理。我们使用这些技术来研究在固定离子晶格中进行量子模拟和量子计算的可行性。在均匀阵列中,我们表明可以实现足够密集的阵列,轴向、磁控管和回旋加速器运动表现出离子间偶极耦合,其速率明显高于预期的退相干。通过添加激光场,这些可以实现可调范围的相互作用自旋汉密尔顿量。我们还展示了局部电位控制如何隔离固定阵列中的少量离子,并可用于实现高保真门。使用静态捕获场意味着我们的方法不受系统尺寸增加时的功率要求限制,从而消除了标准射频陷阱中存在的重大缩放挑战。因此,这里提供的架构和方法似乎为捕获离子量子计算开辟了一条道路,以实现容错规模的设备。
本文介绍了GenH2R,这是一个学习基于远见的人类到机器人(H2R)han-dover技能的框架。目标是为机器人配备能够以各种复杂轨迹的人类传递的几何形状可靠接收对象。我们通过通过全面的解决方案进行大规模学习H2R移交,包括程序模拟资产创建,自动演示式概述和有效的模仿学习。我们利用大型3D模型存储库,敏感的GRASP生成方法和基于曲线的3D动画来创建名为GenH2R-SIM的H2R交换模拟环境,并通过三个尺度级传递了现有模拟器中现有模拟器中的场景数量。我们进一步引入了一种蒸馏友好的演示生成方法,该方法自动产生了一百万个适合学习的高质量演示。最后,我们提出了一种4D模仿的学习方法,该方法通过将来的预测目标增强,以将示范示例提炼为视觉运动切换政策。在所有情况下,模拟器和现实世界中的实验评估都表现出比基线的显着提高(至少 +10%的成功率)。
基于锚点的大规模多视图聚类因其在处理海量数据集方面的有效性而引起了广泛关注。然而,当前的方法主要通过探索锚点图或投影矩阵之间的全局相关性来寻找用于聚类的共识嵌入特征。在本文中,我们提出了一种简单而有效的可扩展多视图张量聚类(S 2 MVTC)方法,我们的重点是学习视图内和跨视图的嵌入特征的相关性。具体而言,我们首先通过将不同视图的嵌入特征堆叠到张量中并旋转它来构造嵌入特征张量。此外,我们构建了一种新颖的张量低频近似(TLFA)算子,它将图相似性结合到嵌入特征学习中,有效地实现不同视图内嵌入特征的平滑表示。此外,对嵌入特征应用共识约束以确保视图间语义一致性。在六个大规模多视图数据集上的实验结果表明,S 2 MVTC 在聚类性能和 CPU 执行时间方面明显优于最先进的算法,尤其是在处理海量数据时。S 2 MVTC 的代码已公开发布在 https://github.com/longzhen520/S2MVTC。
人类的视野。这种能力不仅对于诸如对象操纵和导航之类的实践日常任务至关重要,而且在培养人类创造力方面起着关键作用,使我们能够以深度,幽默感和沉浸感进行设想和制作对象。在本文中,我们重新审视了视图综合问题并提出:我们如何学习一般的3D表示以促进可扩展的视图综合?我们试图从以下两个观察结果中调查这个问题:i)到目前为止,目前的最新进展主要集中在训练速度和/或提高效率上[12,18,18,31,48]。值得注意的是,这些进步都共同依赖于体积渲染以进行场景优化。因此,所有这些视图合成方法固有地是场景特定的,再加上全局3D空间坐标。相比之下,我们主张一个范式移动,其中3D表示仅依赖场景颜色和几何形状,学习隐式表示无需地面真相3D几何形状,同时也从任何特定坐标系统中具有重要的独立性。这种区别对于实现可扩展性至关重要,以超越场景指编码所施加的约束。ii)本质上,视图合成更适合作为有条件的生成建模问题,类似于生成图像中的图像[25,60]。随着可用信息的增加,生成的场景变得更加限制,逐渐收敛于地面真相表示。仅给出一组稀疏的参考视图时,所需的模型应提供多个合理的预测,并利用生成表述中的固有随机性,并从自然图像统计信息和从其他图像和对象中学到的语义先验中获取见解。值得注意的是,现有的3D生成模型通常仅支持单个参考视图[20 - 23,44]。我们认为,更理想的生成配方应具有不同级别的输入信息。在这些见解的基础上,我们引入了Eschernet,这是一种图像到图像的条件扩散模型,用于视图合成。Eschernet利用了使用Dot-Product自我注意力的变压器体系结构[51],以捕获参考对目标和目标对目标视图一致性之间的复杂关系。Eschernet中的一个关键创新是相机位置编码(CAPE)的设计,专门代表4个DOF(以对象)和6个DOF相机姿势。这种编码的速率空间结构进入令牌,使模型能够仅基于其相对摄像机的转换来计算查询和密钥之间的自我注意事项。总而言之,Eschernet表现出以下非凡的特征:•一致性:埃舍内特固有地整合了视图的固定性,这要归功于相机位置编码的设计,从而鼓励了对目标对目标和目标视图视图的一致性。
将可再生能源集成到现代智能电网中,由于能源产生的可变性和不可预测性,提出了重大挑战。对可再生能源输出的准确实时预测对于确保网格稳定性,优化能量分布并最大程度地减少了能量浪费至关重要。本研究探讨了针对智能电网中实时可再生能源预测的可扩展监督学习算法的开发和应用。
哺乳动物的大脑由数千万到数千亿个神经元组成,这些神经元以毫秒级的时间尺度运行,而目前的记录技术只能捕捉到其中的一小部分。能够以高时空分辨率对神经活动进行采样的记录技术一直难以扩展。研究最深入的哺乳动物神经元网络(例如大脑皮层)呈现出分层结构,其中最佳记录技术可在大面积上进行密集采样。然而,对特定应用设计的需求以及大脑的三维结构与二维微加工技术之间的不匹配严重限制了神经生理学研究和神经假体。在这里,我们讨论了一种可扩展神经元记录的新策略,即将玻璃包覆微线束与来自高密度 CMOS 体外 MEA 系统或高速红外摄像机的大规模放大器阵列相结合。由于玻璃包覆微线中芯金属的高导电性,允许使用超薄金属芯(低至 < 1 µ m)和可忽略不计的杂散电容,因此实现了高信噪比(< 25 µ V RMS 本底噪声,SNR 高达 25)。尖端的多步电化学改性可实现超低接入阻抗和最小几何面积,这与芯直径基本无关。我们表明,可以减小微线尺寸,以几乎消除插入时对血脑屏障的损伤,并且我们证明微线阵列可以稳定地记录单个单元活动。将微线束和 CMOS 阵列相结合可以实现高度可扩展的神经元记录方法,将电神经元记录的进展与硅微加工的快速进展联系起来。系统的模块化设计允许自定义记录位置的排列。我们采用微创、高度绝缘和功能化的微线束将二维 CMOS 架构扩展到第三维,这种方法可以转化为其他 CMOS 阵列,例如电刺激设备。
保留所有权利。该产品及相关文档受版权保护,并在许可下分发,以限制其使用,复制,分发和分解。如果没有任何形式或任何方式复制本产品或相关文档的任何部分,而无需任何事先书面授权。尽管在准备本书时都采取了每项预防措施,但检查点不承担任何错误或遗漏的责任。本文所述的此出版物和功能可能会更改,恕不另行通知。