t yler v asse 1,2†,y Azeed a lhiyari Ph.d 1†,l auran k。e Vans M.D.3,4,Ramesh Shori Ph.D 3。 m aie s t。 J OHN MD。 ph.d 1,4,6(*),T uan V o -d inh Ph.d 1,2,5(*)1 Fitzpatrick Photonics,Duke University;美国北卡罗来纳州达勒姆市27708,美国2杜克大学生物医学工程系;美国北卡罗来纳州达勒姆市27708,美国3头颈外科,加利福尼亚大学戴维·格芬医学院;洛杉矶,美国加利福尼亚州90025,美国4头和颈癌计划;洛杉矶大学;洛杉矶,加利福尼亚州90025,美利坚合众国5杜克大学化学系;美国北卡罗来纳州达勒姆市27708,美国6 Jonsson综合癌症中心,洛杉矶大学医学中心;美国美国加利福尼亚州洛杉矶90025†这些作者同样为这项工作做出了同样的贡献。3,4,Ramesh Shori Ph.D 3。m aie s t。J OHN MD。ph.d 1,4,6(*),T uan V o -d inh Ph.d 1,2,5(*)1 Fitzpatrick Photonics,Duke University;美国北卡罗来纳州达勒姆市27708,美国2杜克大学生物医学工程系;美国北卡罗来纳州达勒姆市27708,美国3头颈外科,加利福尼亚大学戴维·格芬医学院;洛杉矶,美国加利福尼亚州90025,美国4头和颈癌计划;洛杉矶大学;洛杉矶,加利福尼亚州90025,美利坚合众国5杜克大学化学系;美国北卡罗来纳州达勒姆市27708,美国6 Jonsson综合癌症中心,洛杉矶大学医学中心;美国美国加利福尼亚州洛杉矶90025†这些作者同样为这项工作做出了同样的贡献。
由于电动汽车和电池储能系统的重要性日益严重,因此必须在生产过程中和生产后确保电池安全性。一个方面是内部结构的可视化,可以通过计算机断层扫描(CT)作为一种非破坏性测试(NDT)方法来实现。深度学习工具可以快速学习和执行不同的图像处理任务。但是,在大多数设置中,生成训练这些工具所需的标记数据很昂贵。因此,这项工作通过逐步学习(GL)解决了CT体积中阳极和阴极的分割,该技术仅需要单个注释的体积切片。该技术利用了相邻切片之间的高相似性,并应用于电池堆栈细胞和圆柱形细胞。对于堆栈细胞,使用了平移相似性,这导致平均增益比联合(IOU)点相交0.09。对于圆柱细胞,提出了沿旋转中心切片的顺序分割。这导致GL应用之前的堆栈单元的较高初始IOU为0.78 vs. 0.73。对于圆柱细胞类型的GL的IOU增益为0.01 iOU点较小,但由于去除其余的伪影时,定性样品显示出改善。
摘要 - 网络威胁的快速发展已经超过了传统的检测方法,需要创新的措施,能够解决现代对手的适应性和复杂性。一个新颖的框架是构造的,利用时间相关图来建模恶意操作中固有的复杂关系和时间模式。该方法动态捕获的行为异常,提供了一种可靠的机制,可在实时场景中区分良性和恶意活动。广泛的实验证明了该框架在各种勒索软件家族中的有效性,其精度,召回和总体检测准确性始终如一。比较评估强调了其比传统的基于签名和启发式方法更好的表现,尤其是在处理多态性和以前看不见的勒索软件变体方面。该体系结构的设计考虑到可扩展性和模块化,确保与企业规模环境的兼容性,同时保持资源效率。对加密速度,异常模式和时间相关性的分析提供了对勒索软件运营策略的更深入的见解,从而验证了该框架对不断发展的威胁的适应性。该研究通过整合动态图分析和机器学习来推进网络安全技术,以在威胁检测中进行未来的创新。这项研究的结果强调了改变组织检测和减轻复杂网络攻击的方式的潜力。
准确地识别草坪边界是草坪割草机器人的可行操作的基础。当前的草坪边界识别方法依赖于预埋的电缆或通过RTK-GPS定位技术绘制边界。两种方法都容易受到定位错误和环境变化的影响。实时识别基于图像的草坪边界的实时识别可以在路径计划和对草坪割草机器人的边界识别之间形成实时闭环,从而提高了机器人工作的鲁棒性和可靠性。U-NET网络是一个简单的图像分割模型,适用于具有有限计算资源的机器人。但是,草坪的二元分割的结果通常是开放的边界线,这与医学图像中U-NET模型的某些多闭合单元的结果不同。因此,很难将U-NET模型直接应用于准确的草坪分割。考虑到草坪图像的特征和有限的计算资源,本文引入了具有通道空间注意机制和变化的损耗函数的改进的U-NET模型,这更好地解决了草坪边界识别的问题。改进模型的MDICE值为97.7%,比原始U-NET模型高约2%。
在过去的几年中,人们越来越意识到许多科学领域的可重复性问题。在这项工作中,我们的目标是评估当 MRI 图像经过 (i) 使用相同预处理流程的两个不同版本,以及 (ii) 引入模拟在不同环境下执行的数值扰动进行预处理时,深度分割模型产生的肿瘤分割结果的可重复性。结果表明,这两个变异源可能导致分割结果发生重要变化:Dice 可以低至 0.59,而豪斯多夫距离可以高达 84.75。此外,两种情况都显示出相似的值范围,这表明不稳定性的根本原因可能是数值稳定性。这项工作可以作为提高流程数值稳定性的基准。
在此处给出了完整的确认部分:致谢:这项工作得到了中国国家自然科学基金会(No.62227801和No.UME20B2062,No.62376024)的支持,以及中国国家关键研究与发展计划(20222ZD0117900)。
雷达在恶劣天气下的稳健性和提供动态信息的能力使其成为高级驾驶辅助系统 (ADAS) 中摄像头和激光雷达的宝贵补充 [1]。尽管用于 RGB 图像和激光雷达点云 (PC) 的语义分割深度学习方法已经很成熟,但它们在雷达中的应用仍未得到充分探索,尤其是包含额外海拔信息的 4D 雷达数据 [2] [3] [4] [5]。本文通过提出一种直接在距离-方位角-海拔-多普勒 (RAED) 张量上执行语义分割的方法来解决这一研究空白。此外,还引入了一种新颖的自动标记流程来在 RaDelft 数据集中生成逐点多类标签,从而实现使用雷达数据的联合检测和分类。
主要结果:我们通过 5 倍交叉验证在 BraTS 2021 数据集上评估了我们的方法,并取得了优异的性能,Dice 相似系数 (DSC) 为 0.936、0.921 和 0.872,Hausdorff 距离的第 95 百分位数 (HD95) 分别为整个肿瘤 (WT)、肿瘤核心 (TC) 和增强肿瘤 (ET) 区域的 3.96、4.57 和 10.45,在平均 DSC 和平均 HD95 方面均优于近期最先进的方法。此外,消融实验表明,将 Transformer 融合到我们改进的 nnUnet 框架中可以提高脑肿瘤分割的性能,尤其是对于 TC 区域。此外,为了验证我们方法的泛化能力,我们进一步在 FeTS 2021 数据集上进行了实验,并在 11 个看不见的机构上取得了令人满意的分割性能,其中 WT、TC 和 ET 区域的 DSC 分别为 0.912、0.872 和 0.759,HD95 分别为 6.16、8.81 和 38.50。
I. 简介 脑肿瘤是医学上的一大难题,需要精确的分割和分类来优化诊断和治疗。从历史上看,这些关键问题在很大程度上依赖于医务人员的手动决策,充满时间限制、观察者之间的差异以及越来越大的人类疲劳影响准确性的风险。尽管如此,机器学习的乐观声音,更具体地说是深度学习技术的出现,似乎将脑肿瘤分析引向了辉煌的前景。本研究旨在了解 U-Net 架构在脑分割和肿瘤分类中的作用,同时通过准确、高效和可重复的解决方案彻底改变该领域。借助深度学习,该研究希望克服与手动分析方法和响应式自动化流程相关的不足,这些流程可以持续训练以提供正确的结果。选择 U-Net 架构是一个明智的决定,因为它在生物医学图像分割任务中取得了成功,并且在描绘高级语义特征和细粒度空间映射方面具有固有优势