摘要。对 74 颗恒星进行了圆形光谱偏振观测,试图通过其光谱线中的纵向塞曼效应探测磁场。观测样本包括 22 颗正常 B、A 和 F 星、4 颗发射线 B 和 A 星、25 颗 Am 星、10 颗 HgMn 星、2 颗 λ Boo 星和 11 颗磁性 Ap 星。使用最小二乘反卷积多线分析方法(Donati 等人,1997 年),从每个光谱中提取了高精度斯托克斯 I 和 V 平均特征。我们完全没有发现正常、Am 和 HgMn 星中存在磁场的证据,纵向场测量的上限通常比以前为这些物体获得的任何值小得多。我们得出结论,如果这些恒星的光球层中存在任何磁场,这些磁场的排列顺序与磁性 Ap 恒星不同,也不类似于活跃的晚期恒星的磁场。我们还首次在 A2pSr 恒星 HD 108945 中检测到磁场,并对五颗先前已知的磁性 Ap 恒星的纵向磁场进行了新的精确测量,但没有在其他五颗被归类为 Ap SrCrEu 的恒星中检测到磁场。我们还报告了几个双星系统的新结果,包括 Am-δDel SB2 HD 110951 快速旋转次星的新 v sin i。
神经炎症存在从轻微到严重的分级。适应性反应维持体内平衡,包括释放神经胶质递质、神经营养因子和细胞因子,以及血管扩张和吞噬作用。12 这维持了突触可塑性以及神经元的保护、修复和再生。然而,适应不良包括促炎因子的释放和血浆外渗,导致功能障碍:兴奋过度、抑制受损和计算能力下降。13 在更严重的情况下,可能会发生神经毒性,包括兴奋毒性、细胞凋亡和血液-中枢神经系统屏障破坏,从而导致神经退化、功能丧失和增加患慢性疾病的可能性。抗炎机制可能会同时触发以终止神经炎症并减少病理结果。14
欧洲底部捕鱼联盟(EBFA)欢迎卡迪斯专员在海洋保护区(MPAS)内对底部拖网的平衡方法。在最近的讲话1中,专员强调了一项基于科学的战略在平衡生物多样性保护与可持续捕鱼实践之间的重要性。EBFA特别鼓励他专注于量身定制的评估和逐案评估,以确保决策是由证据而不是广泛假设驱动的。这种合理的方法长期以来由EBFA提倡,可以防止在当前和新的环境立法(例如《自然恢复法》》等新的环境立法下封闭捕捞区域。
Hayden,M。H.,Schramm,P。 P. D.,Khan,A。S.,Left-Begay,C.,Maldonado,J.,Saha,S.,Shafi,F.,Vaidyanatan,A.,A。,&Wilhelmi,O。 (2023)。 在这里。 在A. R. Crimes,C。W. Avery,D。R. Easterling,K。E. E. ),第五国民 美国 全球变更程序。 https://doi.org/10.7930/nca5.2023.ch15Hayden,M。H.,Schramm,P。 P. D.,Khan,A。S.,Left-Begay,C.,Maldonado,J.,Saha,S.,Shafi,F.,Vaidyanatan,A.,A。,&Wilhelmi,O。 (2023)。在这里。在A. R. Crimes,C。W. Avery,D。R. Easterling,K。E. E. ),第五国民 美国 全球变更程序。 https://doi.org/10.7930/nca5.2023.ch15在A. R. Crimes,C。W. Avery,D。R. Easterling,K。E. E.),第五国民美国全球变更程序。https://doi.org/10.7930/nca5.2023.ch15https://doi.org/10.7930/nca5.2023.ch15
摘要 对辐射敏感的金属氧化物半导体场效应晶体管 (RADFET) 经 110 Gy(H 2 O) 伽马射线辐照。在不同正栅极偏压下辐照过程中的阈值电压 VT 结果表明,VT 随栅极偏压的增加而增加。辐照过程中的阈值电压偏移 Δ VT 拟合得很好。分析了辐射过程中固定陷阱 (FT) 和开关陷阱 (ST) 对 Δ VT 的贡献。结果表明,FT 的贡献明显高于 ST。提出了一个描述阈值电压偏移及其分量对栅极偏压依赖性的函数,该函数与实验值非常吻合。研究了辐照后 RADFET 在室温下无栅极偏压的退火情况。阈值电压的恢复(称为衰减)会随着辐射期间施加的栅极偏压而略有增加。 Δ VT 表现出与固定状态引起的阈值电压分量 Δ V ft 相同的变化,而由于开关陷阱引起的阈值电压分量 Δ V st 没有变化。
摘要 - BioInformatics应用程序通常需要根据其与特定序列目标的相似性过滤FastQ测序读取,例如消除与特定病毒相关的污染或隔离读取。尽管基于对齐的方法对这些任务有效,但它们表现出降低的灵敏度并可能引入高估,尤其是在面对较低的相似性搜索时。在本文中,我们使用一种新颖的无对齐方法来过滤FASTQ根据定义的相似性阈值读取。与基于对齐方式的方法不同,即使在相似性较低的方案中,例如在古代DNA中,我们的方法也保持较高的灵敏度。此外,我们的方法是基于压缩的,可以减轻其他方法固有的高估风险。我们在各种应用程序中演示了我们方法的多功能性,并提供了一种称为磁铁的公共开源物。磁铁提供了用于加速处理的多线程功能,并且可以在https://github.com/cobilab/magnet上自由访问。索引项 - 数据压缩,生物信息学,计算生物学,测序读取,数据滤波器
现行立法和监管框架未能完全解决这些潜在的漏洞。现有法律,例如 2024 年《保护美国人的数据免受外国对手侵害法案》(PADFAA)、CFIUS 当局和先前的行政命令,5 侧重于针对特定交易的审查或针对特定行业的控制,但缺乏对数据交易的广泛限制。新规则通过限制与关注国家和涵盖人员的某些敏感批量数据交易来填补这一空白,建立了司法部国家安全部门(“NSD”)为此类转移颁发许可证、提供咨询意见和执行特定安全缓解要求和豁免的流程。该规则将在 90 天内生效,部分内容将在 270 天内逐步推出。
前额叶皮层 (PFC) 是大脑皮层中调节各种认知功能的区域。PFC 的一个显著特征是其青春期成熟期较长,这对于成年后获得成熟的认知能力必不可少。本文,我们表明,大脑中的免疫细胞小胶质细胞有助于这一成熟过程。我们发现,青春期前额叶小胶质细胞的短暂性和细胞特异性缺陷足以诱发成年后出现与 PFC 相关的认知功能、树突复杂性和突触结构障碍。虽然青春期前额叶小胶质细胞的缺乏也会改变成年前额叶回路中的兴奋-抑制平衡,但成年后前额叶小胶质细胞耗尽时不会产生认知后遗症。因此,我们的研究结果表明,青春期是前额叶小胶质细胞作用于认知发展的敏感时期。
传感器。通常,气体传感器有一些基本标准和性能参数:(a)高灵敏度; (b)高选择性; (c)性能的稳定性; (d)快速响应; (e)工作温度低和(f)低功耗。召开半导体气体传感技术被广泛研究和使用。6 - 8但是,由金属氧化物组成的这种气体传感器需要高温才能运行,其中一些在高于150°C的温度下工作,以增强气体使用感应材料的化学反应性。因此,能源消耗增加,因此在日常环境条件下降低了其适用性。室温(RT)传感器的操作不需要热量,因为它们不需要热量。最近,随着低维半导体的进展,2D材料吸引了很多考虑。通过使用2D材料,可以开发出更灵敏度的低功率和高密度气体传感器。2D材料的较大表面 - 体积比使其具有高度的效率和更大的恢复效率。9,10它们具有良好的连接和半导体特征。表面修饰也可以在这些材料上由于弱范德华力而进行,这使得与0D和1D材料相比,这使得2D材料更合适。2D材料可以归类为:(a)石墨烯家族; 11(b)2D金属氧化物; 12
CRISPR/Cas 系统最初是作为基因编辑工具开发的,在核苷酸检测方面也显示出巨大的潜力。最近发表在 Molecular Cell 上的一项研究(Freije et al., 2019)开发了一种基于 Cas13a 的 CARVER(Cas13 辅助限制病毒表达和读取)来检测 RNA 病毒,例如淋巴细胞脉络丛脑膜炎、甲型流感和水泡性口炎,这为在疾病诊断中检测广泛的病毒核苷酸提供了潜在的扩展应用。细菌和古细菌利用 CRISPR/Cas(成簇的规律间隔的短回文重复序列/CRISPR 相关)系统作为适应性免疫系统来防御噬菌体感染。 Cas效应子在CRISPR RNA(crRNA)的引导下,结合并切割DNA或RNA靶标,以防御入侵的核苷酸(Horvath and Barrangou,2010;Sorek et al.,2013;Barrangou and Marafini,2014)。CRISPR/Cas系统的发现可以追溯到1987年,规则间隔的直向重复序列首次在大肠杆菌的iap基因中发现(Ishino et al.,1987)。直到2002年,间隔直向重复序列被命名为CRISPR(Jansen et al.,2002)。2012年,Jinek et al.报道称,CRISPR/Cas9 可以用单个 RNA 嵌合体特异性切割靶 DNA(Jinek 等,2012),拉开了 CRISPR/Cas9 系统用于基因组编辑的序幕。自 CRISPR/Cas9 被发现以来,CRISPR/Cas 系统备受关注,CRISPR 工具箱不断扩充。作为 DNA 靶向 CRISPR 工具箱的有力补充,CRISPR/Cas12a(以前称为 CpfI)是一种 2 类 V 型 CRISPR/Cas 效应物(Zetsche 等,2015),具有