1. 扫描的墨水签名(附有辅助验证文件),例如电子邮件收据(前提是电子邮件由签名者发送)或有效驾驶执照或有效州政府签发的身份证的复印件)。2. 使用数字笔或数字垫捕获的签名;(附有数字证书)3. 由经批准的安全的第三方软件应用的签名,该软件使用经过认证的数字签名,目前包括 Adobe Pro、FoxIt 和 DocuSign。4. 附在电子邮件中的文档上的打字签名(前提是电子邮件由签名者发送)。5. 对于任何以电子方式签名的文档,签名者必须明确表明以电子方式签名的意图。当任何签名者选择不以电子方式签名时,必须向签名者提供有关如何手动签署协议的明确说明。
在这里,我们要求一些不同的东西:我们希望供奉献者说服verifier供供者知道一些东西。供者说服verifier的x∈X还不够,因此y = f(x)。应确信verifier fifier知道这种解决方案x。我有时会在此处称x为“证人”。甚至开始构建这样的证明系统,我们首先必须回答一个哲学上的问题:“知道某事?”意味着什么?更具体地说,图灵机器“知道某事”是什么意思?在希望构建“知识证明”之前,我们需要定义知识。在这种情况下,加密摄影师为“知识”提出了非常聪明,非常自然的定义。这是事后显而易见的那些定义之一,但在您看到它之前一点都不明显。这个想法是要说一个供者“知道x”,如果它是类似的定义,可能同样适用于定义人类知识。在足够剧烈的相互作用下,可以从摊子中提取X。特别是,我们会说,如果有一种有效的算法,可以从任何贵族p ∗中“提取”证人x,从而使verifier具有良好的可能性“提取”证人x,我们会说一个交互式证明具有知识。为简单起见,我们将自己限制在供者发送第一个消息的三个移动协议中。我们会说,该协议是否可以从这对接受的成绩单中提取证人,可以满足知识的声音。这些有时称为“ Sigma协议”。在这三个移动协议中,我们可以考虑运行P ∗ for-ward以获取一个接受的成绩单(V,C,Z),然后将P ∗重新打开,直到Verifirer向其发出挑战的那一刻,然后在另一个挑战中再次进行挑战,以获得第二个笔录(V,C c',z')。
本期《Signatures》的重点是:行业对遥感活动的贡献。《Signatures》编辑团队就这一主题编写了许多有趣的文章。业内多位专业人士就这一焦点主题撰写了简短生动的文章,为本期特刊做出了贡献。他们的文章很好地展现了技术和研发工作。除了常规专栏之外,本期还包含对 ISRS 总裁兼印度空间研究组织艾哈迈达巴德空间应用中心主任 Ranganath R Navalgund 博士的采访以及对一些行业领袖的采访。我感谢所有作者、行业领袖、祝福者和 Navalgund 博士对《Signatures》的贡献。我相信 ISRS 会员和行业专业人士将从本期提供的信息中受益匪浅。
量子货币方案是量子密码学的基础支柱之一,它允许银行在用户系统中分发量子不可克隆状态,用户可以使用货币来交易这些状态。量子货币的黄金标准要求方案是公钥的 [ AC12 ],包括两种量子算法,Bank 和 QV,语法如下:Bank 对量子令牌 (pk,| qt ⟩ pk) ← Bank 进行采样,其中 | qt ⟩ pk 是量子态,pk 是经典的公共验证密钥。pk 可以在用户网络中分发,而量子部分 | qt ⟩ pk 可以发送给某个特定用户。然后,| qt ⟩ pk 的副本可以在系统中的用户之间传递,并使用密钥 pk 通过 QV 进行公开验证。核心安全保障是除了银行之外的任何人都无法克隆代币,或者更严格地说,没有用户能够生成两个都通过量子验证 QV ( · , pk ) 的状态。通过将量子信息的内在属性与加密技术相结合,公钥量子货币为信息技术的未来带来巨大希望。这种量子加密方案实现了在仅存在经典计算的世界中不可能实现的功能,也为更高级的技术奠定了基础,例如量子闪电 [ Zha19 ] 和程序的量子复制保护 [ Aar09 ]。值得注意的是,公钥量子货币为货币体系中的隐私问题提供了解决方案,我们希望系统既安全(钞票保持其价值并且无法伪造),又私密(交易信息只能保留给涉及的两方,特别是银行不必知道)。不幸的是,按照标准定义,要执行量子货币方案,我们需要量子计算来生成和验证代币,以及量子通信在设备之间传输代币 1 。然而,理想情况下,我们希望最小化所需的模型,只使用量子计算和经典通信——更准确地说,在保持量子货币的关键优势(例如交易隐私)的同时使通信经典化是量子密码学中的一个核心开放问题。除了有趣的理论问题和经典通信与量子通信 2 之间存在根本区别这一事实之外,实际差异还包括 (1) 经典通信网络可以基于信息广播(使用信息克隆来执行),这特别允许移动设备之间的通信,以及 (2) 基于经典通信的交易有可能提供付款证明,因为可克隆的经典记录可以作为证明。更仔细地研究经典通信问题,代币系统中有三个通信方向:(1) 从银行到用户,(2) 从用户到另一个用户,以及 (3) 从用户到银行。众所周知,通过获得更强的不可克隆保证,可以部分解决经典通信问题。具体来说,量子代币有三个已知的不可克隆安全级别。这些级别可以提高经典通信能力,我们稍后会看到。
EOE 和 LST 与消极情绪、焦虑和抑郁有关,而 AES 与积极情绪、开放性经验、尽责性、积极情感和自尊有关 (Liss et al., 2008; Ahadi and Basharpoor, 2010; Sobocko and Zelenski, 2015 )。最初,Aron 和 Aron 将 SPS 概念化为一种分类特征,将 SPS 得分高的人定义为高度敏感人群 (HSP; Aron and Aron, 1997 )。据估计,大约 20–30% 的普通人群具有高度感官敏感性 (Aron et al., 2012; Lionetti et al., 2018; Pluess et al., 2018 )。Lionetti 等人进行的潜在类别分析表明,SPS 得分越高,敏感度越高 (HSPs)。基于两个样本(n = 451 和 n = 540)的 HSPS 结果确定了低、中和高敏感组,分布分别为 29%、40% 和 31%(Lionetti 等人,2018 年)。另外,研究人员提出 SPS 是一种气质特征,其特征是信息处理深度增加、对环境细微差别的意识增强以及易受过度刺激(Aron 等人,2012 年;Homberg 等人,2016 年;Greven 等人,2019 年)。这一概念源自 Gray (1981) 的行为抑制系统 (BIS),该系统涉及暂停以评估对环境条件的反应行为(Gray,1981 年)。因此,HSP 更倾向于在做出决策和采取行动之前仔细分析新情况(Smolewska 等人,2006 年;Sobocko 和 Zelenski,2015 年)。个体的 BIS 越敏感,他们对新刺激就越敏感(Aron 和 Aron,1997 年)。较高水平的 SPS 与焦虑、抑郁和躯体形式障碍等精神疾病有关(Liss 等人,2005 年、2008 年;Bakker 和 Moulding,2012 年;Jonsson 等人,2014 年;Greven 等人,2019 年)。一项检查 SPS 遗传性的双胞胎研究发现,47% 的差异可以用遗传因素来解释(Assary 等人,2021 年)。此外,Aron 等人。 (2005) 发现 HSP 在恶劣环境条件下会表现出负面情感和害羞,这是发展精神疾病的危险因素 ( Aron et al., 2005 )。此外,研究表明,HSP 通常会报告更多的压力体验,因为他们对刺激的感知增强,处理更深。有研究表明,负责过滤掉不相关信息的丘脑过滤器在 HSP 中将更多刺激识别为相关刺激,这可能导致压力增加 ( Benham, 2006; Evans and Rothbart, 2008; Jagiellowicz et al., 2011; Gerstenberg, 2012 )。
摘要。在过去的十年中,向密码学家的过渡一直是密码学家的巨大挑战和努力,并具有令人印象深刻的结果,例如未来的NIST标准。但是,迄今为止,后者仅考虑了中央加密机制(sig-natures或kem),而不是更先进的机制,例如针对隐私的应用程序。特别感兴趣的是一种称为盲人签名,群体签名和匿名证书的解决方案家族,标准已经存在,并且在数十亿个设备中部署。在此阶段,尽管最近的作品提供了两种不同的替代方案,但在此阶段,没有一个有效的量子后对应物,尽管有两个不同的替代方案可以改善这种情况:一个具有相当大的元素的系统,但在标准套件下证明了安全性,或者在标准的系统下获得了更高效率的系统,以更有效的系统为代价提供了Ad-Hoc Interactive互动假设或弱化的安全模型。此外,所有这些作品仅考虑了尺寸的复杂性,而没有实现其系统所组成的相当复杂的构建障碍。换句话说,此类系统的实践性仍然很难评估,如果人们设想相应系统/标准的量词后过渡,这是一个问题。在这项工作中,我们提出了具有有效协议(SEP)的所谓签名构造,这是这种隐私性的核心。通过重新审视Jeudy等人的方法。(Crypto 2023)我们设法获得了上面提到的两个替代方案中的最佳选择,即短尺寸,没有安全性妥协。为了证明这一点,我们将SEP插入一个匿名的凭证系统中,达到少于80 kb的凭证。同时,我们完全实施了我们的系统,尤其是Lyubashevsky等人的复杂零知识框架。(Crypto'22),据我们所知,到目前为止还没有完成。因此,我们的工作不仅改善了保护隐私的解决方案的最新技术,而且还大大提高了对现实世界系统部署的效率和影响的理解。
对简洁的计算复杂任务或“硬问题”是一个广义术语,它涵盖了需要大量资源来解决的问题。密码学通过建立方案的安全性与复杂问题的棘手性之间的等价来使用它们。两个严重的问题已被广泛用于公钥cryp- tography:整数分解和离散对数问题。在1994年,Shor [1]表明,这些经典的复杂问题可以很容易地在大型量子计算机上解决。创建量子计算机的进展变得越来越明显。这促使加密社区,行业和许多标准或许多标准计划,计划以当今广泛使用的公开密码学替代量子安全替代方案:量子后加密摄影。
摘要。在过去的十年中,向密码学家的过渡一直是密码学家的巨大挑战和努力,并具有令人印象深刻的结果,例如未来的NIST标准。但是,迄今为止,后者仅考虑了中央加密机制(sig-natures或kem),而不是更先进的机制,例如针对隐私的应用程序。特别感兴趣的是一种称为盲人签名,群体签名和匿名证书的解决方案家族,标准已经存在,并且在数十亿个设备中部署。在此阶段,尽管最近的作品提供了两种不同的替代方案,但在此阶段,没有一个有效的量子后对应物,尽管有两个不同的替代方案可以改善这种情况:一个具有相当大的元素的系统,但在标准套件下证明了安全性,或者在标准的系统下获得了更高效率的系统,以更有效的系统为代价提供了Ad-Hoc Interactive互动假设或弱化的安全模型。此外,所有这些作品仅考虑了尺寸的复杂性,而没有实现其系统所组成的相当复杂的构建障碍。换句话说,此类系统的实践性仍然很难评估,如果人们设想相应系统/标准的量词后过渡,这是一个问题。在这项工作中,我们提出了具有有效协议(SEP)的所谓签名构造,这是这种隐私性的核心。通过重新审视Jeudy等人的方法。(Crypto 2023)我们设法获得了上面提到的两个替代方案中的最佳选择,即短尺寸,没有安全性妥协。为了证明这一点,我们将SEP插入一个匿名的凭证系统中,达到少于80 kb的凭证。同时,我们完全实施了我们的系统,尤其是Lyubashevsky等人的复杂零知识框架。(Crypto'22),据我们所知,到目前为止还没有完成。因此,我们的工作不仅改善了保护隐私的解决方案的最新技术,而且还大大提高了对现实世界系统部署的效率和影响的理解。