氯化溶剂羽流的修复是一项艰巨的技术挑战,因为只有少数几个地点已经证实能够将地下水完全恢复到原始状态。本情况说明书总结了造成这一困难的一个关键因素 - 基质扩散。基质扩散是地下水中的污染物最初从高渗透性区域(例如砂砾)中浓度较高的区域迁移到低渗透性介质(例如黏土砂、粉砂和粘土)的过程。当高渗透性区域的地下水羽流浓度降低时,这种扩散过程可以逆向发生(“反向扩散”),并且在主要污染源被移除或控制后很长一段时间内,可能成为难以管理的次要污染源。
,我们通过一种溶剂提取方法从天然染料源蓝莓中提取花色苷,用于在制造染料敏化太阳能电池(DSSC)中用作敏化剂。在提取花青素时,我们使用了乙腈,丁醇,乙醇和丙酮等溶剂,并检查了它们对DSSCS性能的影响。当前,可用的商业级二氧化钛(TIO 2)粉末由80 mol%金红石和20 mol%的解剖酶相组成。在准备光阳极的制备中,Tio 2粉末是通过医生刀片技术应用的。准备好的光轴浸入了提取的花青素染料中,并在整个过程中屏蔽了光线,并在不同的持续时间内暴露于不同的持续时间。为了制备电极,将大约1 nm厚的铂膜溅射到粘锡氧化物(ITO)玻璃底物上。最后,通过染料染色将涂层光射流用电极密封。为了评估制造的DSSC的性能,通过紫外线可见光谱(UV- VIS)和太阳能模拟器测量了入射光子到电子转换效率(IPCE)。结果表明,从丁醇中蓝莓提取的染料持续12小时的DSSC效率最高。在这项研究中,TERT叔丁醇是用于制造DSSC的最佳提取溶剂,从蓝莓中提取的花青素,效率为0.45%,填充系数为68.20%。需要进一步的研究才能找到一种更合适的溶剂和提取方法,而这项研究的结果证明,从天然染料来源(例如蓝莓在太阳能细胞技术中)使用染料是有希望的。
a. 委员会应定期举行会议,其频率和间隔由委员会决定,以履行其职责和责任,但无论如何,每年不得少于三次。多数成员应构成法定人数。出席的多数成员应决定提交委员会的任何事项。委员会主席应主持每次会议。如果委员会主席未出席会议,出席该会议的委员会成员应指定一名成员作为该会议的代理主席。
摘要:为了增加电池以进行可持续运输和储能,需要提高锂离子电池的充电和排放能力。为了实现这一目标,描述细胞内部状态的准确数据至关重要。已经得出了几种模型,并报告了这些模型中的运输系数。我们首次报告了一组完整的传输系数,以建模锂离子电池电池三元电解质中的浓度和温度极化,从而使我们能够测试常见的假设。我们包括化学势和温度下的梯度引起的效果。我们发现,由于盐和溶剂极化引起的电压贡献与欧姆损失相同,并且必须考虑到更准确的建模和对电池性能的理解。我们报告了新的Soret和Seebeck系数,并发现与电池研究相关的情况下,热极化很重要。总体上,分析适用于电化学系统。■简介
摘要这项研究工作的目的是制定磷酸西他汀磷酸盐的快速口服膜来治疗糖尿病。使用膜形成聚合物HPMC E 15和HPMC E 50 CPS和PEG和PEG和丙烯类乙二醇作为增塑剂,使用溶剂磷酸盐的快速溶解膜是制备的。评估了所有制备的薄膜的重量变化,厚度,折叠耐力,伸长率,拉伸强度,药物含量,在 - 维特罗崩解时间,体外溶解测试,SEM分析和稳定性研究中。所有结果都令人满意。在所有配方中,F3分别在3分钟内分别释放了20秒和99%的药物。基于上述结果,可以得出结论,磷酸西他汀的快速溶解口服膜可能会产生快速作用,从而通过避免第一个通过效应1来增强吸收1。
投资回报 每年的潜在投资回报估计为 817,000 美元,同时过期油漆减少 70,000 磅。这是海军每年在 PSNS & IMF 的船舶油漆上花费的总金额。这包括购买油漆的原始成本(770,000 美元)和妥善处理过期油漆所产生的成本(47,000 美元)。此外,减少产生的危险废物量将提高对安全和环境法规的遵守程度。目前,危险废物罚款每违规每天接近 76,000 美元。此外,更好地管理油漆的保质期可以降低购买、储存、使用和处理船上油漆产品的总生命周期成本。
摘要:锂(LI)金属电池(LMB)由于其超高理论能量密度而被视为最有前途的储能系统之一。但是,LI阳极的高反应性导致电解质的分解,从而对LMB的实际应用产生了巨大的障碍。常规试验方法在为LI金属阳极设计高度稳定的溶剂分子时效率低下。在此,提出了一种数据驱动的方法来探测溶剂还原稳定性的起源,并加速了晚期电量的分子设计。首先使用基于图理论的算法构建一个潜在溶剂分子的大数据库,然后通过第一原理计算和机器学习(ML)方法进行了全面研究。根据最低无占用分子轨道(LUMO)的分析,在离子 - 溶剂复合物的优势下,99%的电解质的还原稳定性下降。Lumo能级与结合能,键长和轨道比因子有关。基于沙普利添加剂解释的一种可解释的ML方法将偶极矩和分子半径识别为影响协调溶剂的还原性稳定性的最关键描述。这项工作不仅为离子溶剂化学提供了富有成果的数据驱动的见解,而且还揭示了调节溶剂的还原稳定性的关键分子描述子,从而加速了下一代LI Batteries的高级电解质分子的合理设计。8 - 11■简介可充电电池的出现彻底改变了现代技术,催化了大规模网格和无数消费电子产品的开发,例如智能手机,笔记本电脑和电动汽车。1-3,尤其是锂(Li)离子电池(LIBS),是最广泛的可充电电池之一,具有显着改变的能量能量和生活方式习惯的模式。4-7尽管Libs由于明显的优势而占据了可充电电池市场多年的主导地位,但它们的实用能量密度正接近理论上的限制。因此,由于现代社会的需求不断增长,因此需要强烈需要下一代高能密度。
作者的完整列表:Xia,Xinxin;香港中国大学,勒;香港城市大学,成谷; Zhejiang University Chen,Zeng; Yao,Nannan Yao;生物分子和有机电子学,物理,化学和生物学系,林克平大学,SE-581 83,瑞典林肯,Qin,Minchao;鲁伊香港中国大学; Zhenzhen张大学武汉大学高级研究所; Yuyu化学研究所CAS PAN; Shenyang技术大学,Yiqun石油化学工程学院;香港林的中国大学Yuze; iccas,; Min,Jie;冯汉大学高级研究所,冯汉;链接大学,物理,化学和生物学; Jinan University,Physics Zhu,Haiming;吉安格大学,布雷达斯,让·卢克;亚利桑那大学,化学与生物化学陈,洪宗;千江大学聚合物科学与工程系的郑大学;香港城市大学,新华社化学,材料科学与工程学;香港中国大学,物理
摘要:固体聚合物电解质(SPE)将允许在下一代固态锂离子电池(LIBS)中提高安全性和耐用性。在SPE类中,三元复合材料是一种合适的方法,因为它们提供了高室温离子电导率,出色的循环和电化学稳定性。In this work, ternary SPEs based on poly(vinylidene fluoride- co - hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by在不同温度(室温,80、120和160°C)下溶剂蒸发。溶剂蒸发温度会影响样品的形态,结晶度和机械性能以及离子电导率和锂转移数。分别在室温和160°C下制备的SPE获得了最高离子电导率(1.2×10 - 4 S·CM - 1)和锂转移数(0.66)。电荷 - 放电电池测试显示,在160°C下制备的SPE,分别在C/10和C/2速率下分别在C/10和C/2速率下的排放能力值最高值。我们得出结论,在SPE制备过程中,对溶剂蒸发温度的良好控制使我们能够优化固态电池性能。关键字:三元复合材料,PVDF-HFP,蒸发温度,固体聚合物电解质,锂离子电池
在锂负极上形成疏锂无机固体电解质界面 (SEI) 并在正极上形成正极电解质界面 (CEI) 对高压锂金属电池是有益的。然而,在大多数液体电解质中,有机溶剂的分解不可避免地会在 SEI 和 CEI 中形成有机成分。此外,有机溶剂由于其高挥发性和易燃性,通常会带来很大的安全风险。本文报道了一种基于低熔点碱性全氟磺酰亚胺盐的无有机溶剂共晶电解质。锂负极表面的独特阴离子还原产生了一种无机的、富含 LiF 的 SEI 膜,该膜具有很强的抑制锂枝晶的能力,这一点可以从 0.5 mA cm −2 和 1.0 mAh cm −2 时 99.4% 的高锂电镀/剥离 CE 以及 80°C 下全 LiNi 0.8 Co 0.15 Al 0.05 O 2 (2.0 mAh cm −2 ) || Li (20 μ m) 电池的 200 次循环寿命看出。所提出的共晶电解质有望用于超安全和高能锂金属电池。