1 北京航空航天大学微电子学院、北京大数据与脑计算高精尖创新中心费尔特北京研究所,北京 100191,中国 2 中国工程物理研究院微系统与太赫兹研究中心,四川成都 610200,中国 3 中国工程物理研究院电子工程研究所,四川绵阳 621999,中国 4 中国科学院物理研究所、北京凝聚态物理国家实验室,北京 100190,中国 5 中国科学院大学物理科学学院,北京 100049,中国 6 松山湖材料实验室,广东东莞 523808,中国 7 济南大学自旋电子学研究所,山东济南 250022,中国
1 中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190;baiqinghu@iphy.ac.cn (QB);yangguo@aphy.iphy.ac.cn (YG);azjin@iphy.ac.cn (AJ);quanbaogang@iphy.ac.cn (BQ);hfyang@iphy.ac.cn (HY);blliu@iphy.ac.cn (BL) 2 中国科学院大学物理学院,中国科学院真空物理重点实验室,北京 100190 3 松山湖材料实验室,东莞 523808;liangqijie@sslab.org.cn 4 深圳大学射频异质集成国家重点实验室,深圳 518060;2200434018@email.szu.edu.cn (TL) wgliao@szu.edu.cn (WL) 5 深圳大学电子信息工程学院,深圳 518060,中国 6 中国科学院大学,中国科学院拓扑量子计算卓越中心,中国科学院真空物理重点实验室,北京 100190,中国 * 通信地址:xinhuang@iphy.ac.cn (XH); czgu@iphy.ac.cn (CG) † 这些作者对这项工作做出了同等贡献。
作者简介 Jiaqi Luo 博士(ORCID ID:https://orcid.org/0000-0001-8961-505X)是华东师范大学经济与管理学院旅游管理系的讲师。她的研究兴趣包括旅游与酒店营销、旅游大数据和博彩旅游。她曾在《旅游管理》、《当代酒店管理国际期刊》和《目的地营销与管理期刊》等主要旅游和酒店学期刊上发表过文章。 Songshan (Sam) Huang 博士(ORCID ID:https://orcid.org/0000-0003-4990-2788)是伊迪斯科文大学商学院旅游和服务营销研究教授。他的研究兴趣包括游客行为、目的地营销、导游以及各种中国旅游和酒店学问题。他在主要旅游和酒店学期刊上发表了大量关于中国游客行为和中国旅游和酒店学问题的文章,包括《旅游管理》、《旅游研究期刊》和《酒店管理国际期刊》。王仁武,博士,华东师范大学经济与管理学院信息管理系副教授。他的研究兴趣包括数据分析和数据挖掘、机器学习和深度学习。资助详情:本研究由国家社会科学基金资助
1国际量子材料中心,北京大学,北京大学,北京大学2号,北京大学2个国家重油加工的国家主要实验室,新能源与材料学院,中国石油大学,北京大学102249,中国3北京3北京中国科学院物理学研究所,北京100190,中国北京523808,北卡省北京材料实验室,北京100049,中国科学院523808,中国北卡尔523808,中国,波士顿学院,Quonton Interigation,MAD,MAD,MAD,MAD,MAD,美国,北京100871,中国9 HEFEI国家实验室,Hefei 230088,中国†应向其通信。jianwangphysics@pku.edu.cn(J.W。)。*这些作者也同样贡献。
extended 2D Tinkham model Yue Liu, 1,2,† Yuhang Zhang, 1,2,† Zouyouwei Lu, 1,2,† Dong Li, 1,3,* Yuki M. Itahashi, 3 Zhanyi Zhao, 1,2 Jiali Liu, 1,2 Jihu Lu, 1,2 Feng Wu, 1,4 Kui Jin, 1,2,5 Hua Zhang,1 Ziyi Liu,1小居,1,2,5,** Zhongxian Zhao,1,2,5 1北京国家冷凝物质物理学实验室,物理研究所,中国科学院,中国100190,中国。2个物理科学学院,中国科学院,北京100049,中国。 3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。2个物理科学学院,中国科学院,北京100049,中国。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。 4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。 5,中国广东523808的东瓜材料实验室。 摘要。 批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。 然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。 在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。 为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。3 Riken新兴物质科学中心(CEMS),Saitama 351-0198,日本。4高级光电量子体系结构和测量的主要实验室,教育部,北京理工学院物理学院,中国北京100081。5,中国广东523808的东瓜材料实验室。摘要。批量的二维(2D)超导性由于其在对称性破坏,非平凡拓扑,第二相波动和非常规的超导性之间的复杂相互作用而引起了极大的关注。然而,尽管某些插入的分层超导体具有短的C轴超导相干长度,但已被错误地分类为各向异性三维(3D)超导体。在这里,我们研究(Li,fe)Ohfese超导体,具有不同程度的层间未对准,揭示了依赖样品的超导尺寸,同时始终如一地观察Berezinskii – Kosterlitz-kosterlitz-theless – toneless – toneless – toneless – toneless – toneless(bkt)转变。为了解决这种差异,我们开发了一个扩展的2D Tinkham模型,该模型定量捕获了层间未对准引起的模糊效应。我们进一步证明了该模型在(Li,Fe)Ohfese和cetyltrimethyl铵(CTA +) - 钙化(CTA)0.5 SNSE 2超导体中的有效性,突出了其广泛的适用性。这项工作提供了对大量2D超导性的有价值的见解,并建立了扩展的2D Tinkham模型,用于定量提取插入的分层超导体中的固有超导性能,尤其是那些表现出明显的层间未对准的超导体。†这些作者也同样贡献。*联系作者:dong.li.hs@riken.jp **联系作者:dong@iphy.ac.cn
zhiqiang chen 首席执行官 Minety 电池储能 郭松山 首席技术官 Minety 电池储能 Ged Barlow 首席执行官 Net Zero North West Emma Swiergon 技术顾问 Net Zero 技术中心 Da Mawby 商务经理 Northern Powergrid Metering Ltd Christopher Aird 高级合伙人 Norton Rose Fulbright LLP Edward Davenport 律师 Norton Rose Fulbright LLP Charles Winch 合伙人 Norton Rose Fulbright LLP Tom McCarty 高级投资经理 Octopus Energy Generation Cameron Wilson 战略分析师 Offshore Renewable Energy Catapult Steve Ross 副总监 - Energy Systems Opergy Michelle Hitches 高级项目经理 ORE Catapult Cameron Wilson 战略分析师 ORE Catapult Craig Walker 业务开发经理 PDMS Group Chris Calvert 执行董事 Pegasus Group Simon Tarr 高级总监 - Land & Property Pegasus Group Matt Fox 高级合伙人 Pinsent Masons Justin Atkin 代表 英国和爱尔兰 安特卫普-布鲁日港 Rebecca Zeitlin 传播与营销主管 Protium Keith Daly 主席 QED Group Michelle McMullan 博士研究生 贝尔法斯特女王大学 Joshua Poulten 业务发展经理 R&M 电气集团工程师 Md Talal Rahman 公司董事 RAHMAN 石油和液化石油气站 Chris Streatfeild 可再生能源安全总监 Madeleine Clarke EnergyPulse 研究员 RenewableUK Liz Conboy RenewableUK 商业总监 Grete Domarkaite RenewableUK 高级内容制作人 Evie Hoolahan RenewableUK 业务发展主管 Caitland Lomas RenewableUK 活动经理 Pete McCrory RenewableUK 政策经理 Marina Serrano RenewableUK 活动主管 Lucinda Tonge RenewableUK 高级公共事务顾问 Abigail Vann RenewableUK 高级活动主管 Barnaby Wharton 未来电力系统总监 RenewableUK Bola Sangosanya RES 高级氢能集成经理 David Lynch RINA 业务发展总监 Thomas Fairclough 高级工程师 Risktec Solutions Stuart Mulholland 客户关系经理 Risktec Solutions Fiona Spowers 通讯总监 Riversimple Kyle Murchie 专业连接工程师Roadnight Taylor Hugh Taylor 首席执行官 Roadnight Taylor Emma Obong 业务发展顾问 RSK Corrine Barry NetZero 总监 - 英国东海岸 RWE
摘要 高分相机(GFXJ)是我国第一款自主研发的机载三线阵CCD相机,设计飞行高度2000m时,对地面三维点的GSD为8cm、平面精度为0.5m、高程精度为0.28m,满足我国1:1000比例尺测绘要求。但GFXJ原有的直接定位精度在平面方向约为4m,高程方向约为6m。为满足地面三维点精度要求,提高GFXJ直接定位精度,本文对GFXJ几何定标进行了深入研究。本次几何标定主要包括两部分:GNSS杆臂与IMU杆轴失准标定、相机镜头与CCD线畸变标定。首先,简单介绍GFXJ相机的成像特性。然后,建立GFXJ相机的GNSS杆臂与IMU杆轴失准标定模型。接下来,建立基于CCD视角的GFXJ镜头与CCD线畸变分段自标定模型。随后,提出迭代两步标定方案进行几何标定。最后,利用在黑龙江省松山遥感综合场和鹤岗地区获取的多个飞行区段进行实验。通过标定实验,获得了GNSS杆臂和IMU视轴失准的几何标定值。为前向、下视和后向线阵独立生成了可靠的CAM文件。实验表明,提出的GNSS杆臂和IMU视轴失准标定模型和分段自标定模型对GFXJ相机具有良好的适用性和有效性。提出的两步标定方案可以显著提高GFXJ相机的几何定位精度。GFXJ原始直接地理定位精度在平面方向约为4 m,在高程方向约为6 m。平面精度约为0.2 m,高程精度小于0.28 m。此外,本文建立的定标模型及定标方案可为其他机载线阵CCD相机的定标研究提供参考。利用GNSS杠杆臂和IMU视轴失准校准值以及CAM文件,GFXJ相机的定位精度可以在仅使用几个地面控制点进行空中三角测量后满足3D点精度要求和2000 m飞行高度1:1000的测绘精度要求。