神经形态计算使用受大脑启发的基本原理来设计电路,以卓越的能效执行人工智能任务。传统方法受到传统电子设备实现的人工神经元和突触的能量区域的限制。近年来,多个研究小组已经证明,利用电子的磁性和电学特性的自旋电子纳米器件可以提高能源效率并减少这些电路的面积。在已使用的各种自旋电子器件中,磁隧道结因其与标准集成电路的既定兼容性和多功能性而发挥着重要作用。磁隧道结可以用作突触,存储连接权重,用作本地非易失性数字存储器或连续变化的电阻。作为纳米振荡器,它们可以充当神经元,模拟生物神经元组的振荡行为。作为超顺磁体,它们可以通过模拟生物神经元的随机尖峰来实现这一点。磁结构(如畴壁或 skyrmion)可以通过其非线性动力学配置为用作神经元。神经形态计算与自旋电子器件的几种实现方式展示了它们在这一领域的前景。用作可变电阻突触时,磁隧道结可在联想记忆中执行模式识别。作为振荡器,它们可在储层计算中执行口语数字识别,当耦合在一起时,它们可对信号进行分类。作为超顺磁体,它们可执行群体编码和概率计算。模拟表明,纳米磁体阵列和 skyrmion 薄膜可作为神经形态计算机的组件运行。虽然这些例子展示了自旋电子学在这一领域的独特前景,但扩大规模仍面临一些挑战,包括
近年来,研究人员越来越多地探索二维 (2D) 电子级材料,以将其用于半导体器件。二维材料由单层、原子厚的晶体结构组成,具有独特的性质。它们不再遵循块体材料的自然物理定律,而是受量子定律支配。它们表现出广泛有用的电气、机械和光学特性,具有革命性的巨大潜力,可以彻底改变下一代电子设备:提供纳米级集成、超高速运行和低功耗。几十年来,人们一直认为二维材料不表现出铁磁性。然而,在 2017 年,科学家发现两种二维材料——碘化铬和 CGT (Cr 2 Ge 2 Te 6 )——本质上是铁磁性的。他们的研究为探索各种磁性材料(如铁磁性、半磁性和顺磁性)开辟了新的可能性。所有这些材料都有可能用作电子级材料。从那时起,几种二维材料被理论化并归入这一类别。
委员会计划:Jayasimha,弗吉尼亚州联邦联邦。(国家的统一); Claduc Claire,Spintec,Cea Grenoble(法国); Franco CICCAC,米兰的多物(意大利); Vincent Cross,CNRS/Thalese(法国)物理混合物; Henri-Jean M. Drouhin,实验室。; Michel I. Dyaconov,Unive。安装2(法国); Michael E.Flatté,Unive。(Unitials); Pietro Gambardella,Eth Zurich(瑞士); Jean-Marie George,CNRS/Thales Mother(法国); Nils C. Gerhardt,Unives。bochum(德国);朱莉·格罗勒(Julie Groller),CNRS/Thalese(法国)物理混合物;哈曼的订婚(以色列);哈利里的话,西北联合。(国家的统一);票A. Kdoparast,弗吉尼亚理工学院和州州。(国家的统一); Mathias Claui,Unive。康斯坦斯(德国); Denis Kochan,Unive。雷根堡(德国); Lamor的Jean Lamour研究所(法国);考虑H. Li,美国实验室搜索海军。(国家的统一);阳光明媚的国王阿卜杜拉。联合,Cinam,Unive Aix-Marseille,CNRS(法国); Xavier Marie,Insa -Univ。;唯一的标准标准研究所;奥塔尼(Otani),统一。; Pribiag Vlad,Unive。;定义拉维索纳,基本电子研究所(法国); Rougemail Nicolas,NéelInstitute(法国);环球马丁·勒特。Halle-Wittenberg(德国); Jing Shi,Unive。Halle-Wittenberg(德国); Jing Shi,Unive。; Basil V.主题,Unive。(法国); Luc Thomas,Applied Materials,Inc。 (曼联); Olaf M. J. van't Erve,美国实验室搜索海军。(国家的统一); Wunderlich,Unive。雷根堡(德国); ZOT空间,Unive。美国
• 通过溅射或 MBE 在 bcc CoFe 或 Fe 磁性电极上,或在非晶态 CoFeB 电极上生长,然后进行退火以重结晶电极,从而形成质地非常好的 MgO 屏障。
H。Ambreen A,S。Saleem A,S。A. Aldaghfag B,M。Zahid C,S。Noreen C,M。Ishfaq A,M。Yaseen A,*一种自旋 - 呼吸链球化学和铁 - 毛线 - 毛发(软)材料和设备材料和设备实验室,物理学系,Budriculture of Fystricant of Fystricant byrive of Falthricant of Falthican bysalabad 3804040404004040404040404040年404040404040404040年。科学,努拉·宾特·阿卜杜勒拉赫曼公主,P。O。Box 84428,Riyadh 11671,沙特阿拉伯C化学系,农业大学Faisalabad,Faisalabad 38040,巴基斯坦在这项研究中,旋转极化密度功能理论(DFT)实施以预测BE 1-X CR x SE的物理特征,x se x se x se(x = 6.5%),12.5%,12.5%,12.5%。纯BESE化合物的电子特性显示出半导体的行为,但在Cr掺杂bese阐明了所有掺杂浓度的BESE半金属铁磁(HMF)。结果阐明了每CR -ATOM的总磁矩M TOT为4.0028、4.0027、4.0021和4.0002μb,分别为6.25%,12.5%,18.75%,25%的浓度,磁性浓度和磁性主要来自杂质的磁性旋转旋转密度的d- state。此外,还计算了光学参数,以确定掺杂对材料对能量跨度的响应的影响,从0到10 eV。光学研究表明,所研究的系统在紫外线范围内具有最大的吸光度和光导率,并具有最小的反射。总体结果表明,CR掺杂的硒化氏酵母(BESE)是用于旋转和光电设备的有前途的材料。在1983年,De Groot等人观察到了HMF行为。(收到2024年2月29日; 2024年4月29日接受)关键词:Spintronics,DFT,磁密度,光学参数1.从过去几十年来的引入中,对新兴的化合物组进行了密集的实验和理论工作,该化合物被认为是稀磁半导体(DMS)。DMS已在自旋产业和多功能电子设备(光电,气体传感器,现场发射设备,非挥发性存储器设备和紫外线吸收器)中使用[1-6]。DMS基于III – V和II – VI二元化合物,这是铁磁(FM)和半导体特性的组合。DMS是通过在宿主材料矩阵[7]中掺入过渡金属(TM)来实现的,该矩阵[7]由于电子特征的变化而改变了宿主系统的E G [8],从而导致一半金属铁磁材料,导致金属和半导性行为,显示金属和半导向行为。是第一次研究半赫斯勒化合物的带结构,例如PTMNSB和NIMNSB [9]。在理论上和实验上都预测了几位研究人员,HMF在各种材料中的行为,例如钙钛矿化合物LA 0.7 SR 0.7 SR 0.3 MNO 3 [10],Heusler Alloys Co 2 Mnsi [11] [11] v掺杂的MGSE/MGTE [15],Bete [16],Znse [17]和Znte [18]。
B.Dieny 1 , ILPrejbeanu 1 , K.Garello 2 , P.Gambardella 3 , P.Freitas 4,5 , R.Lehndorff 6 , W.Raberg 7 , U.Ebels 1 , SODemokritov 8 , J.Akerman 9 , 10 , APir 11 , P.Ac . delmann 2 , A.Anane 13 , AVChumak 12, 14 , A.Hiroata 15 , S.Mangin 16 , M.Cengiz Onbaşlı 17 , Md'Aquino 18 , G.Prenat 1 , G.Finocchio 19 , L.Lopez Diaz , R.C. esenko 22 , P.Bortolotti 13 1. Univ. 1. 格勒诺布尔阿尔卑斯大学、CEA、CNRS、格勒诺布尔 INP、IRIG、SPINTEC,法国格勒诺布尔 2. 比利时鲁汶 Imec 3. 苏黎世联邦理工学院材料系磁学与界面物理实验室,瑞士苏黎世。 4. 国际伊比利亚纳米技术实验室(INL),葡萄牙布拉加 5. 系统与计算机微系统与纳米技术工程研究所(INESC MN),葡萄牙里斯本 6. Sensitec GmbH,德国美因茨 7. 德国英飞凌科技股份公司,德国应用科学研究所,德国明斯特 9. 瑞典哥德堡大学物理系 10. 瑞典皇家理工学院工程科学学院应用物理系 11. 德累斯顿—罗森多夫亥姆霍兹中心,离子束物理和物理研究所,德国迈兴 12. 凯泽斯劳滕工业大学和州立研究中心 OPTIMAS,德国凯泽斯劳滕 13. 法国国家科学研究中心泰雷兹公司巴黎南大学巴黎-萨克雷,帕莱索,法国 14. 维也纳大学物理学院,维也纳,奥地利 15. 约克大学电子工程系,赫斯灵顿,英国 16. 洛林大学让·拉穆尔研究所,南锡,法国 17. 科克大学,伊斯坦布尔,18. 佩科维奇,那不勒斯,意大利 19. 墨西拿大学数学与计算机科学系、物理科学与地球科学系,墨西拿,意大利 20. 萨拉曼卡大学应用物理系,萨拉曼卡,西班牙 21. 约克大学物理系,马德里材料研究所,英国 22 CSIC,西班牙
在目前的长距离通信中,大量粒子携带的经典信息本质上对某些传输损耗具有鲁棒性,但因此可能会被窃听而不被察觉。另一方面,量子通信可以提供可证明的隐私,并可以利用量子中继器进行纠缠交换来减轻传输损耗。为此,过去几十年来,人们付出了相当大的努力来开发量子中继器,将长寿命量子存储器与不可区分的单光子源结合起来。已经开发了多种固态光学自旋量子比特候选物,包括量子点、稀土离子以及金刚石和碳化硅 (SiC) 中的色心。从这个角度来看,我们简要概述了在 SiC 中开发光学活性自旋量子比特的最新进展,并讨论了量子中继器在应用中的挑战和可能的解决方案。鉴于不同材料平台的发展,讨论了 SiC 自旋量子比特在可扩展量子网络中的前景。
图1 |手性卤化物钙钛矿的光学和自旋表征的示例[1]。(S -HP1A)2 PBBR 4的晶体结构,具有4 3和4 1对称元素的插图。b(S -HP1A)2 PBBR 4和(R -HP1A)2 PBBR 4的薄膜的圆形二色性和 - s斑谱光谱。C磁性原子力M- croscopy(MC-AFM)测量的示意图。 d在(S -HP1A)2 Pbbr 4(红色)和(R -HP1A)2 PBBR 4(蓝色)中的自旋极化的平均值。C磁性原子力M- croscopy(MC-AFM)测量的示意图。d在(S -HP1A)2 Pbbr 4(红色)和(R -HP1A)2 PBBR 4(蓝色)中的自旋极化的平均值。
主题代码:PH-xxx 课程名称:自旋电子技术简介 LTP:3-0-0 学分:3 主题领域:OEC 大纲:磁学基础知识:磁学类型、自旋轨道相互作用、偶极相互作用、交换相互作用、磁各向异性 自旋相关传输:异常霍尔效应、各向异性磁阻 (AMR)、巨磁阻 (GMR)、隧道磁阻 (TMR)、自旋阀 (SV)、磁隧道结 (MTJ)、磁场传感器(硬盘读取头、生物传感器) 磁化动力学:自旋转移扭矩 (STT)、自旋霍尔效应 (SHE)、自旋轨道扭矩 (SOT)、轨道霍尔效应 (OHE)、磁化切换、磁性 skyrmions 自旋电子器件:磁阻随机存取存储器 (MRAM) 技术 - STT-MRAM、SOT-MRAM、自旋扭矩和自旋霍尔纳米振荡器(STNO 和 SHNO)、自旋量热器、赛道存储器基于自旋的计算:纳米磁逻辑、自旋逻辑、基于振荡器的神经形态计算、自旋波计算。科目代码:PH-xxx 课程名称:太空探索 LTP:3-0-0 学分:3 学科领域:OEC 大纲:不同国家太空探索的历史、对太空技术的需求、对空间科学知识的需求、近地空间的等离子体、大气中的波、其他行星的大气/电离层、空间测量:主动和被动遥感和现场测量、轨道:开普勒行星运动定律、轨道类型、霍曼转移轨道、卫星通信和导航、空间技术的应用。
补偿磁铁的物理学:抗铁磁铁,磁磁补偿的铁磁铁和合成反铁磁铁非常丰富,有时是独一无二的和出乎意料的。补偿磁铁中允许的新效果类型包括:超快(THZ)动力学,伪粘合元素,(自我)补偿的天空,交错的拓扑结构以及与自旋极化三胞胎超导性的兼容性。因此,补偿磁铁的使用构成了开发新的旋转组件的范式转移,超出了传统的铁磁体的可能性。这个特殊的收藏品为读者提供了最新的材料开发项目,探讨了尖端的基本物理和有希望的补偿磁铁应用。可以将其分为七个主题组,每个组都处理该学科的当前和快速增长的分支。