摘要 我们简要总结了 15 多年来对基于二维材料 (2DM) 的自旋电子学的深入研究,这些研究使我们深入了解了基本的自旋传输机制、磁隧道结和自旋轨道扭矩器件中的新功能,以及使石墨烯成为自旋活性材料的强大而前所未有的邻近效应能力。尽管基于 2DM 的功能性器件和相关异质结构的组合不断增加,但我们概述了仍然阻碍自旋电子学在自旋逻辑和非易失性存储器技术中的实际应用的关键技术挑战。最后,我们提到了当前和未来的方向,这些方向将保持基于 2DM 和范德华异质结构的超紧凑自旋电子学领域的发展势头。
由于纤锌矿半导体中的自旋轨道耦合与闪锌矿半导体相比相对较弱,因此 III 族氮化物半导体 GaN 是用于高性能光学半导体自旋电子器件(如自旋激光器)的有前途的材料。为了降低自旋激光器的工作功率,有必要展示从铁磁材料到具有低电阻接触的 GaN 的高效电自旋注入。这里,通过在 CFAS 和 GaN 之间插入超薄 Co 层,开发了外延半金属 Heusler 合金 Co 2 FeAl x Si 1 − x (CFAS)/GaN 异质结构。CFAS/ n + -GaN 异质结清楚地显示了隧道传导,整流非常小,电阻面积积低至 ≈ 3.8 k 𝛀 μ m 2,比以前工作中报道的要小几个数量级,在室温下。使用具有 CFAS/ n + -GaN 接触的横向自旋阀装置,在低温下观察到非局部自旋信号和 Hanle 效应曲线,表明块状 GaN 中存在纯自旋电流传输。在高达室温的温度下观察到自旋传输,在低于 2.0 V 的低偏置电压下具有 0.2 的高自旋极化。这项研究有望为具有高度自旋极化和低电阻接触的 GaN 基自旋电子器件开辟一条道路。
摘要 - 机器学习系统在实时,关键的决策领域(例如自动驾驶和工业自动化)中获得了突出性。他们的实现应通过不确定性估计来避免过度自信的预测。贝叶斯神经网络(Baynns)是估计预测不确定性的原则方法。但是,它们的计算成本和功耗阻碍了它们在Edge AI中的广泛部署。利用辍学作为后验分布的近似值,将贝恩的参数进行二进制,以及在基于Spintronics基于旋转的计算中(CIM)硬件阵列中实现它们的进一步,可以提供可行的解决方案。但是,设计用于卷积神经网络(CNN)拓扑的硬件辍学模块是具有挑战性且昂贵的,因为它们可能需要大量的辍学模块,并且需要使用空间信息来删除某些元素。在本文中,我们引入了MC-SpatialDropout,这是一种基于空间辍学的近似贝恩,带有Spintronics的新兴设备。我们的方法利用Spintronic设备的固有随机性与现有实现相比有效地实现了空间辍学模块。此外,每个网络层的辍学模块的数量减少了9倍,能量消耗量为94。11×,同时与相关工作相比仍能实现可比的预测性能和不确定性估计。
Spintronics和量子信息科学是两种有前途的信息处理技术的有前途的候选人。这两个字段的组合使我们能够构建用于研究量子现象并实现多功能量子任务的固态平台。很长一段时间以来,由于经典磁化强度的独特特性(在旋转基质和量子位中)在量子信息科学中使用,这两个场的相交受到了经典磁化的不同特性的限制。在过去几年中,这种情况发生了巨大变化,因为使用镁质在编码和处理信息方面取得了显着进展。另一方面,在理解准粒子的纠缠以及设计高质量的量子和光子腔的量子腔处理方面的重大进展提供了物理平台,可以将镁质与量子系统整合在一起。从这些努力中,出现了高度的跨学科领域,它结合了Spintronics,Quantum Optics和量子信息科学。在这里,我们概述了有关镁质量子状态及其与成熟量子平台的杂交的最新发展。首先,我们回顾了镁和量子纠缠的基本概念,并讨论了镁量子的量子状态的产生和操纵,例如单木糖状态,挤压状态和量子多体状态,包括Bose-Einstein凝结以及由此产生的旋转超流体。最后,我们对量子镁质的一些挑战和机遇提出了前景。©2022作者。我们讨论了如何将宏伟的系统与量子平台进行集成和纠缠,包括腔光光子,超导量子台,氮气现象中心和声子,以进行相干信息传输和协作信息处理。这些杂种量子系统对非炎症物理学和平均时间对称性的含义,以及在量子记忆和高精度测量中的应用。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
The outcomes of computational study of electronic, magnetic and optical spectra for A 2 BX 6 (A = Rb; B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ul- tra Soft Pseudo Potential (US-PP) process.RB 2 PBBR 6和RB 2 PBCL 6被发现是一个()半导体,能量差距分别为0.275和1.142 eV,使它们成为有前途的光伏材料。已证实了RB 2 BX 6(B = TC,W,W,IR,TA,MN,SB,MO)的材料的金属材料,显示了进行谱系的出席率。发现介电函数靠近紫外线区域(3.10-4.13 eV)。RB 2 BX 6的灭绝系数具有用于侵犯的能力。状态的带结构和密度确保磁性半导体的性质2 Mn(Cl,Br)6个钙钛矿。RB 2 MNCL 6和RB 2 MNB 6的总计算磁矩为3.00μβ。先进的自旋技术需要室温的铁磁性。目前的工作证实,溴和氯的双钙钛矿对光伏和光电设备具有极大的吸引力。
摘要:具有强垂直磁各向异性 (PMA) 的磁绝缘体在探索纯自旋流现象和开发超低耗散自旋电子器件中起着关键作用,因此它们在开发新材料平台方面非常有吸引力。在这里,我们报告了具有不同晶体取向的 La 2/3 Sr 1/3 MnO 3 (LSMO)-SrIrO 3 (SIO) 复合氧化物薄膜 (LSMIO) 的外延生长,该薄膜通过脉冲激光沉积的连续双靶烧蚀工艺制成。LSMIO 薄膜表现出高晶体质量,在原子级上具有 LSMO 和 SIO 的均匀混合物。观察到亚铁磁和绝缘传输特性,温度相关的电阻率与 Mott 可变范围跳跃模型很好地拟合。此外,LSMIO 薄膜表现出强的 PMA。通过进一步构建亚铁磁绝缘体LSMIO和强自旋轨道耦合SIO层的全钙钛矿氧化物异质结构,观察到显著的自旋霍尔磁阻(SMR)和自旋霍尔类异常霍尔效应(SH-AHE)。这些结果表明亚铁磁绝缘体LSMIO在开发全氧化物超低耗散自旋电子器件方面具有潜在的应用价值。关键词:钙钛矿氧化物,磁性绝缘体,垂直磁各向异性,自旋霍尔磁阻,自旋电子学■引言
1 C. Song,R。Zhang,L。Lia,Y。Zho,X。Zho。 Zho,R。Chen,Y。您,X。Chen和F. Pan,“ Off-Otoe Spin-轨道:材料,机制,性能和潜在应用”,Prog Sci Mater 118,100761(2021)。2 B. Dieny,I.L。Prejbeanu,K。Gambard,democreditov。Valencia,M.C。 Onbaşlı,M. Of Aquino,G。Book,G。Finocchio,L。Lopez-Diaz,R。Chantell,3(8),446–459(2020)。 3 S.A. Wolf,D.D。 Awschalom,R.A。 Buhrman,J.M。 Daughton,S。vonMolnár,M.L。 Roukes,A.Y。 电影和D.M. Trier,Spintronics:对未来科学的讲话294,1488-1495(2001)。Valencia,M.C。Onbaşlı,M. Of Aquino,G。Book,G。Finocchio,L。Lopez-Diaz,R。Chantell,3(8),446–459(2020)。 3 S.A. Wolf,D.D。 Awschalom,R.A。 Buhrman,J.M。 Daughton,S。vonMolnár,M.L。 Roukes,A.Y。 电影和D.M. Trier,Spintronics:对未来科学的讲话294,1488-1495(2001)。Onbaşlı,M. Of Aquino,G。Book,G。Finocchio,L。Lopez-Diaz,R。Chantell,3(8),446–459(2020)。3 S.A. Wolf,D.D。 Awschalom,R.A。 Buhrman,J.M。 Daughton,S。vonMolnár,M.L。 Roukes,A.Y。 电影和D.M. Trier,Spintronics:对未来科学的讲话294,1488-1495(2001)。3 S.A. Wolf,D.D。Awschalom,R.A。 Buhrman,J.M。Daughton,S。vonMolnár,M.L。 Roukes,A.Y。 电影和D.M. Trier,Spintronics:对未来科学的讲话294,1488-1495(2001)。Daughton,S。vonMolnár,M.L。Roukes,A.Y。 电影和D.M. Trier,Spintronics:对未来科学的讲话294,1488-1495(2001)。Roukes,A.Y。电影和D.M. Trier,Spintronics:对未来科学的讲话294,1488-1495(2001)。电影和D.M.Trier,Spintronics:对未来科学的讲话294,1488-1495(2001)。
最近,基于控制旋转的电流已经在电子工业中开设了一门名为Spintronics的新学科[1-6]。半金属是在Spintronics行业中合适的候选材料,以增加NMR和GMR中的磁性记忆和应用。[7]这些材料在另一个自旋和半导体中是金属,在费米表面附近有一个间隙。因此,这些材料是完全磁性的,并且在费米表面附近具有较大的磁性极化。一般而言,三类的半金属命名为二进制和全赫斯勒,而半身的化合物则引起了人们的强烈关注[8-10]。Groot等人首次预测NIMNSB和PTMNSB Heusler化合物的半金属特性[11,12]。然后,其他半金属啤酒器化合物(HM),例如Comnsi,是
实验光子学工作副系/科学院研究助理参考:REQ240218作为该大学持续重新部署承诺的一部分,请注意,如果确定了合适的重新部署,则可以在招聘过程的任何阶段撤回此职位空缺。新兴光子研究中心是一个500m^2大学研究机构,完全致力于超快光子学,光学梳子和Terahertz技术领域内光子学的复杂性。该中心拥有数百万个设施的投资组合,并从包括欧洲ERC,EPSRC,DSTL,Innovate-UK,Leverhulme Trust,美国陆军等几家资助者那里进行了研究赠款。这些包括几个早期职业奖学金和博士学位学生。拉夫堡大学的物理系有一个充满活力的学者社区,他们致力于互相支持以提供出色的研究。它具有非常重要的理论专业知识,可以涵盖几个学科的复杂性和非线性动态的基础,并具有很高的国际知名度,并且员工与世界顶级物理学家合作。Loughborough University拥有雅典娜天鹅青铜奖,认可其致力于改善妇女在STEM(科学,技术,工程和数学)主题中的代表性和职业发展。物理学部致力于创造一种多样化和包容的文化,在该文化中,员工和学生能够蓬勃发展,无论性别,宗教和哲学信仰如何。项目描述Ampere(Active Metaspintronics)是一项雄心勃勃的研究计划,旨在开创SpinTronics领域的进步,与超前光子学接触,以探索和线束旋转现象在不前所未有的时间尺度上。由美国陆军资助,并在Euerc项目时机成功的基础上建立了基础,旨在通过光引起的和Terahertz诱导的旋转操作来提高我们对磁性材料的理解和控制。该项目有望在数据存储,信息处理和能源效率方面打破新的基础,从而为未来提供更快,更有效和强大的电子设备。我们项目的核心是与Spintronics,Terahertz(THZ)光子学和Metasurfaces的非线性幽灵成像技术之间的协同作用。非线性幽灵成像是定时项目中完善的概念,为捕获具有高时间分辨率的复杂光学信息提供了独特的框架。通过在Spintronics的背景下应用此技术,我们旨在实现与Terahertz辐射相结合的超快旋转效应的精确控制和观察。成功实施Ampere不仅将提高我们对Spintronics和THZ光子学的基本理解,而且还将为开发新材料和设备的开发铺平道路。这些进步有望在包括量子计算和超快电子(包括量子计算)之间产生重大影响,这标志着技术格局的变革性步骤。通过安培,我们将以以前从未想过的方式来探索研究和技术创新的未知领域,弥合非线性光学,Spintronics和Terahertz科学之间的差距。