摘要:半导体纳米晶体中的载体旋转是量子信息处理的有前途的候选者。使用时间分辨的法拉第旋转和光致发光光谱的组合,我们证明了胶体CSPBBR 3纳米晶体中的光学自旋极化和相干自旋进液,这些纳米晶体一直持续到室温。通过抑制具有少量施加的磁场的不均匀性高纤维的影响,我们证明了接近纳米晶光发光生命周期的不均匀孔横向旋转旋转时间(T 2 *),从而几乎所有发射的光子都来自colent colehent colent colent colent spins spins spins spins。热激活的LO声子在升高温度下驱动额外的自旋去向,但在室温下仍观察到连贯的自旋进动。这些数据揭示了纳米晶和散装CSPBBR 3中的自旋之间的几个主要区别,并为在基于自旋的量子技术中使用金属 - 甲基钙钛矿纳米晶体打开了门。关键字:钙钛矿纳米晶体,旋转dephasing,t 2 *,时间分辨的法拉第旋转,旋转式,量子信息
X射线吸收是一种通过样品的元素构成来研究物质的方法。该方法对像2P(如2p)的共振内壳激发特别敏感!3D或3D!4F过渡,可以获得亚层敏感性。在这里,我们报告了总电子产量的Everhart - Thornley(ET)检测方案,该方案可在低光子通量下具有高质量的XAS,这是辐射敏感样品的曼陀罗。我们将ET电子产量检测方案应用于HO M 5和M 4边缘的HO 3 N@C 80内hode骨的单层量的X射线吸收。分子(如内叶列烯)是分子旋转型和电子产品的候选成分,其中XAS可能会揭示内侧单元的构象和磁性。1在当前的XAS应用中,我们研究了温度内部方向的可能变化,众所周知,单层内叶烯的平均方向可能在30 K和室温(RT)之间变化。2
实际上手性分子充当了轨道角动量滤波器。[10,11] 通过改变基底,进行了多项实验来探测基底 SOC 的作用。[12] 但所得结果不足以确定 SOC 的作用,因为基底可能有其他影响,如费米能级相对于最高占据分子轨道和最低未占据分子轨道之间间隙的位置,以及极化率,这些可以决定界面处的电导率和势垒,从而影响观察到的自旋极化。在自旋电子学中,自旋从铁磁基底注入,人们研究了自旋极化对铁磁体磁化和用于驱动电流的电场之间的角度 𝜃 的依赖关系。角度依赖性源于磁阻的各向异性。 [ 13 ] 通常,研究发现自旋极化取决于 cos2𝜃。[ 14,15 ]
1 Riken Spring-8 Center,1-1-1 Kouto,Sayo,Sayo,YOOGO 679-5148,日本2日本2精确科学与技术系,大阪大学工程研究生院,2-1 Yamada-Oka,Osaka,Osaka,Osaka 565-0871,日本565-0871,日本3日本3 UniwersytetupoznaðSkiego2,PL-61614 POZNA或波兰4自由电子激光科学中心CFEL,DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY,NOTKERSTER,NOTKERSTER。85,22607德国汉堡5欧洲XFEL GMBH,HOLZKOPPEL 4,22869德国Schenefeld,德国6核物理研究所6,波兰科学院核物理学院,Radzikowskiego 152,152,152,31-342 KRAKOW,波兰克拉克夫,波兰7材料材料部7材料,材料部7材料部 Nagoya, 464-8603, Japan 8 Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan 9 Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
有机半导体,特别是过渡金属卟啉(TMP)和TM邻苯烷(TMPC),可以被视为可以用作一类材料,可用于创建各种适应性和低成本的分子基于分子的电器设备。1–4为了充分利用这些接口的潜力,有机半导体组件的物理,化学和转运特性的理解和能力至关重要。5,6在此框架内,控制金属电荷和有机阵列中的自旋状态的能力是迈向分子自旋的实现的一步,并且已经表明,分子中的单电子注入可以极大地改变其特性。沿着这些线路,对单分子连接的扫描隧道显微镜(STM)研究表明,电子通过仅通过更改磁场而更改磁场来选择电子通过两个不同的3D原子轨道(AOS)和TIP-FEPC-AU交界处的Electron途径传播。该分子装置中的可调巨型磁倍率起源于
BaTiO 3 化合物:DFT 研究 A. Sohail a、SA Aldaghfag b、MKButt a、M. Zahid c、M.Yaseen a,*、J. Iqbal c、Misbah c、M. Ishfaq a、A. Dahshan d、ea 自旋光电子学和铁热电 (SOFT) 材料与器件实验室,巴基斯坦费萨拉巴德 38040 农业大学物理系 b 沙特阿拉伯利雅得 11671 诺拉公主大学 (PNU) 科学学院物理系 c 巴基斯坦费萨拉巴德 38040 农业大学化学系 d 沙特阿拉伯艾卜哈国王大学科学学院物理系 e 埃及塞得港大学科学学院物理系 钒 (V) 掺杂对采用自旋极化理论研究了不同浓度(x = 12.50%、25%、50%、75%)对BaTiO 3 钙钛矿物理性能的影响。两种状态的电子能带结构(BS)表明,Ba 0.875 V 0.125 TiO 3、Ba 0.75 V 0.25 TiO 3、Ba 0.5 V 0.5 TiO 3 和Ba 0.25 V 0.75 TiO 3 化合物均为半金属铁磁(HMF)材料。结果表明,V 对Ba 1-x V x TiO 3 化合物的HMF行为起着重要作用。此外,磁特性证实了所有所述化合物的磁矩的整数值。在光学性能方面,还计算了反射率R(ω)、光吸收α(ω)、介电函数ε(ω)、消光系数k(ω)和折射率n(ω)。完整的光学参数集表明上述材料可用于可见-紫外光电子器件。基于半金属 (HM) 的结果,V 掺杂的 BaTiO 3 可用于自旋电子学应用。 (2021 年 6 月 20 日收到;2021 年 10 月 5 日接受) 关键词:半金属铁磁体、态密度、磁矩、光学参数 1. 简介在过去的十年中,HMF 材料因其在隧道结、光电子学和磁性器件中的应用而引起了人们的广泛关注。此外,HMF 材料在自旋电子学中起着重要作用,因为这些材料包含两种自旋态,一种自旋版本表现出金属行为,而另一种自旋态表现得像半导体或绝缘体。HMFM 化合物,例如 PtMnSb 和 NiMnSb Heusler 合金,最初由 Groot 等人 [1- 4] 报道。
斯里文卡特斯瓦拉大学物理系将于 2023 年 8 月 9 日至 10 日举办为期两天的先进材料、设备和技术国际会议 (ICAMDT-2023)。ICAMDT-2023 涵盖先进材料、设备和技术的最新发展,这些发展将影响几乎所有科学和技术领域。会议的主要目标是汇集来自学术界、国家实验室和工业界的科学家和工程师,讨论先进材料、设备和技术的最新发展,并探索在以下领域解决新出现的问题的合作可能性:1.生物材料和生物电子学2.陶瓷、电介质和铁电材料3.无序材料4.磁性材料和自旋电子学5.发光材料和装置6.光纤通信材料7.空间应用材料8.微机电系统9.纳米材料和纳米电子学10.纳米光子学11.光电材料和器件12.聚合物和有机材料13.半导体14.传感器和其他设备15.固态离子材料和装置16.薄膜和相关技术会议将以混合模式举行。
将杂原子引入石墨烯是调节其催化,电子和磁性特性的强大策略。与氮(N)和硼(B)掺杂的石墨烯的变化时,目前缺乏碳(C)网格中的一种可扩展的企业过渡金属原子的方法,从而限制了模型系统研究的应用兴趣。这项工作提出了生长的合成,从而使钴(CO)与Ni(111)底物上石墨烯中的镍(Ni)原子一起掺入。单个原子在Graphene双空缺中共价稳定,相对于C原子,CO负载范围为0.07至0.22%,可通过合成参数控制。结构表征涉及可变温度的扫描隧道显微镜和AB IN-TIO计算。将共同编码的层转移到透射电子显微镜网格上,通过扫描透射电子显微镜和电子能量损耗光谱法进行了稳定性。此方法对旋转,气体传感,电化学和催化的应用有望,以及对类似金属的石墨烯掺入的潜在扩展。
斯里文卡特斯瓦拉大学物理系将于 2023 年 11 月 6 日至 7 日举办为期两天的先进材料、设备和技术国际会议 (ICAMDT-2023)。ICAMDT-2023 涵盖先进材料、设备和技术的最新发展,这些发展将影响几乎所有科学和技术领域。会议的主要目标是汇集来自学术界、国家实验室和工业界的科学家和工程师,讨论先进材料、设备和技术的最新发展,并探索在以下领域解决新出现的问题的合作可能性:1.生物材料和生物电子学2.陶瓷、电介质和铁电材料3.无序材料4.磁性材料和自旋电子学5.发光材料和装置6.光纤通信材料7.空间应用材料8.微机电系统9.纳米材料和纳米电子学10.纳米光子学11.光电材料和器件12.聚合物和有机材料13.半导体14.传感器和其他设备15.固态离子材料和装置16.薄膜和相关技术会议将以混合模式举行。
手性诱导自旋选择性 (CISS) 描述了手性分子的有效自旋过滤。自近二十年前发现以来,这种现象已导致纳米级量子自旋操纵,有望应用于自旋电子学和量子计算。然而,其潜在机制仍然是个谜,因为所需的自旋轨道相互作用 (SOI) 强度出乎意料地大。在这里,我们报告了一种 CISS 的多轨道理论,其中有效 SOI 是由多体关联引起的电子空穴配对的自发形成产生的。该机制产生了达到室温能量尺度的强 SOI,这可以支持在 CISS 中观察到的大自旋极化。我们理论的一个核心要素是价带和导带的 Wannier 函数分别对应于分子伸长方向空间旋转对称性的一维和二维表示。发现当带隙增加时,诱导的 SOI 强度会降低。我们的理论可能为寻找具有 CISS 效应的其他分子提供重要指导。