独立的化粪池和无菌操作领域作者应得的感谢您讨论手术室中微生物负载的限制性主题(1),作为减少这种情况下微生物负载的可持续措施是必不可少的。表1和表2中比较了化粪池和无菌外科手术,并在操作室的空气中发现微生物的平均值较高,用于化粪池,尤其是形成细菌的有氧孢子(1)。作者强调,“两种过程类型之间的差异在统计学上微不足道的事实不能[…]被解释为平等微生物载荷的直接证据”。但是,在他们的结论中,作者建议不要分开手术室。操作区域具有关键作用。根据日内瓦大学医院的一项前瞻性研究,其中包括6101家联合假体(平均随访70个月),90%的感染起源于手术期间,31%的感染率在> 2年后出现了初始症状(2)。一项前瞻性随机研究表明,微生物在手术室空气中构成的风险(3):„分析从手术结束时伤口冲洗的细菌数量到手术室气氛中受伤的细菌数量与受伤部位患者皮肤上的细菌数量之间的关系,清楚地表明,最重要的和一致的containe of contain of contain of contain是contain的途径。”一项对8052个联合假体的多中心研究表明,在手术室中,感染率随空气污染的增加而上升,而层流空气流量比湍流混合通风更好地保护(4)。doi:10.3238/arztebl.2017.0755a然而,尽管有通风技术,但仍会发展感染。根据Harnoss等人报道的研究。(1)以及上述研究结果,不能提出任何建议,以取消化粪池和无菌手术室之间的分离,以进行外科手术的高风险。
摘要:confinopsis cinerea是真菌发育研究中使用的模型物种之一。这种形成蘑菇的基本菌真菌具有多个发展命运,以响应于改变的环境,并具有动态的生物体发展法规。尽管灰叶梭菌发育中的基因表达已经广泛地领导,但先前的研究仅集中在特定的阶段或真菌发育过程上。缺乏跨不同发育道路的全面观点,并且对生命周期中动态转录调节的全球观点和发展路径远非完整。此外,这种真菌中有关转录和后转录后修饰的知识仍然很少见。在这项研究中,我们在孢子发芽,营养生长,卵巢菌,硬化性菌根形成和成熟身体形成过程中调查了灰曲霉的转录变化和修饰,通过诱导有机体的不同发育路径,并使用高发射式序列序列序列序列序列方法来诱导转录组。在表达基因的身份和丰度中的过渡推动了生物体的生理和形态学改变,包括代谢和多细胞性构建。此外,进行了替代剪接和RNA编辑,并在C. c. c. c. c. c. c.这些修饰与基因的保护特征呈负相关,并且在真菌发育过程中可以为转录组提供额外的可塑性。我们建议C. cinerea在其发育调控中采用不同的分子策略,包括表达基因集的变化,遗传信息的多样化以及RNA分子的可逆差异。这种特征将在迅速变化的环境中提高真菌的适应性,尤其是在发展计划的过渡以及遗传和转录组差异的维持和平衡中。基因表达的多层调节网络是发育调控功能的分子基础。
简介:洪水可能导致土壤中的微生物种群从一个区域转移到另一个区域。放线菌是一种土壤微生物,由于其产生次级代谢物的能力,其商业价值最高。这项研究旨在阐明从洪水和未洪水区域分离的放线菌的抗菌活性。方法:土壤样品是从吉兰丹州达蓬市的洪水泛滥地区和凯兰丹耶利(Jeli)的未洪水地区收集的。使用三种分离方法分离放线菌;超声处理,离心和氯胺T。根据其生长模式(孢子形成),菌落颜色,空中和底物菌丝色以及生长培养基中的可溶性色素形成,筛选了分离的菌株的形态特征。在形态上不同的菌株针对大肠杆菌和白色念珠菌的抗菌和抗真菌活性进行了测试。结果:从土壤样品中分离出970个放线菌菌株(来自洪水的570个菌株和未淹没土壤的400株)。在形态上只有281个菌株是不同的。三十个放线菌菌株的抗菌活性和抗真菌活性。其中十七个抑制了至少一种测试微生物。结论:总而言之,我们的观察结果表明,从洪水泛滥的地区获得的土壤样品显示出各种各样的放线菌,从其形态学特征可以明显看出。这一发现表明,与非洪水土壤面积相比,洪水泛滥的土壤区域具有更高的放线菌。此外,我们发现57%的测试放线菌菌株对至少一种测试有机体表现出活性,表明它们的未来研究潜力。马来西亚医学与健康科学杂志(2023)19(SUPP9):42-49。 doi:10.47836/mjmhs.19.s9.7马来西亚医学与健康科学杂志(2023)19(SUPP9):42-49。 doi:10.47836/mjmhs.19.s9.7
物种。随着DNA测序信息的可用性来指导系统发育分析,从2000年代中期开始重新检查主要定义在形态特征的属中的物种,从而进行了修订,包括将某些物种分配到两个新属中(Hoffmann 2010; Hoffmann 2010; Hoffmann 2010; Hoffmann等; Hoffmann等;2007)。 虽然目前DNA测序是推断该属中新物种的主要方法,而粘膜属中的许多物种对于支持物种划界仍然有用,例如在吸毒物种中,菌落色素化和无性孢子孢子学(Urquhart&Idnurm 20211)。 有50多种吸毒物,其中一半在过去五年中被发现,尤其是来自亚洲国家(HTET等人 2024; Hurdeal等。 2023; Lim等。 2024; Zhao等。 2022a; Zhao等。 2023; Zhao等。 2022b; Zong等。 2021)和巴西(Cordeiro等人 2020; De Freitas等。 2022; Leitão等。 2021)。 这还包括来自澳大利亚的调查,探索了从维多利亚州分离出的吸收菌株的多样性,从而发现了新物种sprapidia healeyae(urquhart&idnurm 2021)。 在这里,作为2023年新型粘膜瘤物种的筛查的一部分,发现了新的抽吸。2007)。虽然目前DNA测序是推断该属中新物种的主要方法,而粘膜属中的许多物种对于支持物种划界仍然有用,例如在吸毒物种中,菌落色素化和无性孢子孢子学(Urquhart&Idnurm 20211)。有50多种吸毒物,其中一半在过去五年中被发现,尤其是来自亚洲国家(HTET等人2024; Hurdeal等。2023; Lim等。2024; Zhao等。2022a; Zhao等。2023; Zhao等。2022b; Zong等。2021)和巴西(Cordeiro等人2020; De Freitas等。2022; Leitão等。2021)。这还包括来自澳大利亚的调查,探索了从维多利亚州分离出的吸收菌株的多样性,从而发现了新物种sprapidia healeyae(urquhart&idnurm 2021)。在这里,作为2023年新型粘膜瘤物种的筛查的一部分,发现了新的抽吸。最近发现更多的吸毒物种表明,在意识到该属内的全部多样性之前,还有一定的距离,更不用说开始了解他们的生态偏好和分布了。奇怪的是,该物种的另外三种菌株(或近亲)先前在2018年被隔离,但当时分配给了不同的吸气物种,因此新物种被隐藏在明显的视线中。
表格列表 表 1-1 现场数据收集活动概述 表 2-1 研究团队成员的职责和资格 表 4-1 将建筑空间指定为研究区域的标准 表 4-2 在特定室内监测位置进行的监测 表 5-1 核心参数和样品收集方法 表 5-2 收集建筑和研究区域信息的清单 表 5-3 核心环境测量参数 表 5-4 为舒适度和环境特性而进行的测量次数 表 5-5 每栋建筑要分析的综合样本数量 表 5-6 实验室能力初步演示所需的样本 表 5-7 HVAC 测量参数 表 5-8 数据收集活动的一般时间表 表 5-9 每日活动时间表 表 7-1 数据缩减程序 表 7-2 验证数据的合理性检查和标准 表 7-3 提交颗粒样本的格式表7-4 氡气样品提交格式 表 7-5 醛类样品提交格式 表 7-6 挥发性有机化合物样品提交格式 表 7-7 空气中真菌样品提交格式 表 7-8 空气中细菌样品提交格式 表 7-9 大宗真菌样品提交格式 表 7-10 大宗细菌样品提交格式 表 7-11 抗原样品提交格式 表 7-12
*通讯作者:mitikuguya@yahoo.com摘要该研究旨在评估吉拉尔·贾索(Girar Jarso)地区城市和城市地区的乳制品生产商和收集中心收集的生牛奶的质量和安全性。收集了总共60种牛奶样品(牛奶生产者40个,从牛奶收集器中收集了20个牛奶样品),以进行物理化学和微生物质量和安全分析。分析是在Holetta农业研究中心的乳制技术和微生物学实验室进行的。温度(29.75±0.52和22.35±0.52°C)存在显着差异(p <0.05),pH(6.69±0.02和6.55±0.02),比重(1.026±0.002和1.026±0.002和1.023±0.002)和脂肪含量(4.02±0.002)和4.02±0.14%和3.5±±±±±±±±±±±±±±±±±±0.14%,样品分别。对于从生产商那里收集的牛奶样品的平均总需氧性细菌计数(TAMBC),大肠菌数(CC)和形成细菌计数的孢子分别为6.42±0.07,4.49±0.09和2.59±0.09±0.09±0.05±0.05 log10 cfu/ml。然而,从牛奶收集器(7.49 log10 cfu/ml)采集的牛奶样品中观察到的细菌计数明显高于生产者牛奶样品(6.42 log10 cfu/ml)。从生产者收集的总牛奶样品中,金黄色葡萄球菌,沙门氏菌属的阳性为57%,7.5%和15%。和单核细胞增生李斯特菌。在研究区域中生产和销售的牛奶的微生物质量被发现不合格,可能会对原始牛奶消费者造成公共卫生风险。关键字:生牛奶,微生物质量,物理化学,安全性。这需要为牛奶生产商和收藏家建立和实施质量和安全控制系统,以提高牛奶的质量和安全性。引言牛奶和牛奶产品是如果无法正确处理,牛奶和牛奶产品是各种微生物繁殖的理想培养基(Soomro等,2002)。来自健康动物的新鲜牛奶中的大多数细菌是无害或有益的。动物或牛奶处理剂的健康状况,或受污染的水,污垢,肥料害虫,割伤和伤口的污染物可能使生牛奶可能危险(Zelalem Yilma,2012)。影响乳制品质量和安全性的主要决定因素是原乳的质量。因此,牛奶应具有正常的成分,不含掺假,必须在卫生条件下产生(Chamberlain,1990)。
卵菌是一类多样化的丝状产孢生物,由数百种臭名昭著的病原体组成。其中一些已被列入全球检疫名单,并受到国家和国际法律的严格管制,以防止其传播(Rossmann 等人,2021 年)。宿主包括主要养殖鱼类和植物物种,以及自然生态系统中的众多动物和植物物种(Cao 等人,2012 年;Fern andez-Ben eitez 等人,2008 年;Kamoun 等人,2015 年;van den Berg 等人,2013 年)。卵菌是一类在分类学上截然不同的真核微生物大类,它与真菌有一些相同的生理和形态特征(例如,都有菌丝和不同的孢子类型),但在系统发育上与异鞭毛藻有亲缘关系(Baldauf 等人,2000 年;Latijnhouwers 等人,2003 年)。卵菌与真真菌可通过一些只有卵菌才具备的生化和细胞学特征来区分:a) 纤维素是菌丝壁的主要微纤维成分;b) 胞质致密体/指纹液泡含有磷酸化的 β-(1,3)-mycolaminarin 葡聚糖;c) 二倍体叶状体,减数分裂先于配子形成;d) 线粒体有管状嵴;最后 e) 利用 a - ε -二氨基庚二酸赖氨酸合成途径 ( Beakes 等人,2012 年)。卵菌生长的环境条件和宿主范围广泛,这反映在其系统发育多样性中 ( Thines,2014 年)。在过去的几十年里,宿主与卵菌相互作用的研究结合基因组学和转录组学,对卵菌如何感染宿主有了相当深入的了解 ( Burra 等人,2017 年)。了解许多相互作用分子的作用对于有针对性地制定管理策略非常重要。已确定卵菌会分泌一系列效应蛋白,这些效应蛋白可以改变宿主的免疫系统以促进感染(Bozkurt 等人,2012 年;de Bruijn 等人,2012 年;Fabro 等人,2011 年)。然而,不同卵菌病原体在感染过程中产生的大量分子尚未得到解释。为了在体内对这些分子进行功能分析,对卵菌进行基因改造的技术至关重要,例如 RNAi(Saraiva 等人,2014 年;Whisson 等人,2005 年)、稳定转化(Judelson 等人,1993 年)或 CRISPR/Cas(Fang 和 Tyler,2016 年)。卵菌的分子技术发展速度比真菌慢,目前仅限于相对较少的物种,与真菌相比效率较低。由于卵菌内部的异质性,转化方案需要针对每个物种进行优化,并且在同一物种内,通常针对每个菌株进行优化。因此
卵骨是一组多样的孢子形成生物,包括数百种臭名昭著的病原体。其中几个在全球隔离名单上,严格受国家和国际法律的监管,以防止其传播(Rossmann等人。,2021)。宿主包括主要的栽培鱼类和植物物种,以及天然生态系统中的许多动物和植物物种(Cao等人,2012年; Fern Andez-Ben Eitez等。,2008年; Kamoun等。,2015年; van den Berg等。,2013年)。卵形构成了一种分类学不同的和大的真核微生物,它与真菌具有某些生理和形态学特征(例如,菌丝的形成和不同的目的孢子类型),但在系统源上是与Heterokont Algae(Baldauf等人(Baldauf等,2000; latijnhouers et and; <,2003)。卵菌和真菌可以通过只有卵菌具有的几种生化和细胞学特征来区分:a)纤维素是其菌丝壁的主要微纤维成分; b)含有磷酸化的B - (1,3) - 米麦葡萄糖的细胞质致密体/纤维打印液泡; c)在配子形成之前的减数分裂的二倍体thalli; d)线粒体带有肾小管crista;最终e)A -ε-二氨基二酰胺酸赖氨酸合成途径(Beakes等,2012年)。在其系统发育多样性中反映了卵形壮成长的大量环境条件和宿主。,2017年)。,2012年; de Bruijn等。,2012年; Fabro等。,2011年)。在过去的几十年中,宿主的卵形相互作用研究结合了基因组学和转录组学对卵菌如何感染其宿主有了充分的了解(Burra等人。意识到许多相互作用的分子的作用对于针对性的管理策略而言至关重要。已经确定,卵蛋白分泌了一系列效应子蛋白,可修饰宿主的免疫系统以促进感染(Bozkurt等人然而,尚未在感染过程中由不同的卵菌病原体产生的大量分子。用于对这些体内的功能分析,以基因修改卵菌的技术,例如RNAi(Saraiva等,2014; Whisson等人,2005年),稳定的转换(Judelson等人。,1993)或CRISPR/CAS(Fang and Tyler,2016年)至关重要。与真菌相比,卵形的分子技术的发展速度较慢,并且与真菌相比,目前仅限于相对较少的物种,并且效率低。由于卵菌中的异质性,需要针对每个物种以及在物种中优化每个菌株的转移方案。因此是
仪器 EP05、EP7、EP11、TM16.1、TM16.2、TM16.3、TM110、TM112、TM132、TM140、TM154、TM182、TM183、TM190、TM203 - 分光光度计 高级测试仪器 EP10 - 分光光度计(包括漫反射/O° 镜面反射的几何形状) 高级测试仪器 EP10、TM61、TM190 - 特氟龙氟碳垫圈 SDL Atlas Testfabrics, Inc. 高级测试仪器 EP10、TM61、TM86、TM132、TM162、TM187、TM190-加速洗涤机 SDL Atlas 高级测试仪器 EP10、TM61、TM86、TM162、TM190 - 不锈钢钢制杠杆锁罐(1 型和/或 2 型) SDL Atlas 高级测试仪器 TM008 - 标准摩擦色牢度仪 SDL Atlas Testfabrics, Inc. 高级测试仪器 TM015、TM106、TM107、TM163 - 汗渍测试仪 SDL Atlas Testfabrics, Inc. 高级测试仪器 TM015、TM26、TM106、TM107- 传统实验室对流干燥箱 SDL Atlas 高级测试仪器 TM016.1、TM16.2、TM16.3 - 由接近于零透光率的材料制成的测试罩,适用于多种曝光等级,如 10、20、40 等。 AFU Testfabrics, Inc. Q-Lab Corporation 高级测试仪器 TM016.1、TM16.2、TM16.3-卡片纸:163 g/m2 (90磅)一层,白色布里斯托指数 SDL Atlas Testfabrics, Inc. 先进测试仪器 TM016.1-日光曝光柜 Q-Lab Corporation 先进测试仪器 TM016.2、TM16.3、TM111、TM186-黑板温度计 Q-Lab Corporation 先进测试仪器 TM016.2-封闭式碳弧灯 先进测试仪器 TM016.3-黑色标准温度计 Q-Lab Corporation 先进测试仪器 TM020A - 刚性安装卡:非吸水纱线样品安装卡,用于环氧树脂安装方法 TM020A-1 加仑真空室,带泵,能够维持至少 25 英寸汞柱的真空压力。 TM020A-2 件式可铸造安装夹,1.5 英寸 TM020A-背胶砂轮,10 英寸(粒度:120、240、320、400、600、800、1200) TM020A-光纤切割器:由两个刀片、一个螺纹销和一个将刀片牢固固定到位的组件组成的装置。该装置通过垂直向下施加压力来操作。它可将纤维切割成大约 250 微米长 SDL Atlas TM020-差示扫描量热仪 TM020-微型 FTIR 仪器 TM023、TM164-暴露室,适用于容纳氮氧化物并维持恒定的高温和相对湿度 SDL Atlas TM026 - 蒸汽机,配有适当的控制装置,可实现均匀的蒸汽流量和温度 TM027 - 轧棉机(小型)或家用绞干机 SDL Atlas TM030-计数室适用于测定孢子浓度,例如血细胞计数器 TM061 - 预热器/储存模块高级测试仪器 TM061、TM86 - 不锈钢球 SDL Atlas Testfabrics, Inc.高级测试仪器 TM061-用于将罐固定在洗衣机轴上的适配器板 SDL Atlas 高级测试仪器 TM066 - 模板 (40 x 15mm) 高级测试仪器 TM066、TM76、TM84-调节和测试室 SDL Atlas 高级测试仪器 TM076 - 尺寸合适的矩形扁平金属表面,可用作电极
蛤蜊是带壳的海洋或淡水软体动物,属于双壳纲。它们是无脊椎动物,壳分为两部分,称为瓣。它们是蛋白质和矿物质(尤其是钙)的丰富来源,建议孕妇和蛋白质缺乏症患者食用。它们栖息在淡水水体或流速缓慢的水域底部。淡水是指溶解盐或其他杂质含量低于千分之零点五的水,存在于淡水湖泊、沼泽和一些河流中。水体中垃圾、底物和其他粪便物质的沉积导致水中病原微生物(细菌)的积聚,给包括蛤蜊在内的水生生物带来沉重的负担。水体中细菌的浓度随季节而变化。因此,本研究旨在了解与蛤蜊有关的淡水中存在的细菌和真菌的类型和密度,并确定微生物在淡水生态系统中十个月内对蛤蜊营养价值的影响。用于分析的样品是伊图河的水,标记为样品 A,样品 B 是用于冲洗蛤蜊的水,样品 C 是均质蛤蜊肠,样品 D 是均质蛤蜊体。使用连续稀释和平板法确定微生物负荷。使用不同的标准生化测试对微生物分离物进行表征和鉴定,以确定:菌落形态、革兰氏染色反应、孢子染色、运动性、糖发酵、吲哚、凝固酶和过氧化氢酶的产生。使用官方分析化学协会概述的方法进行物理化学和营养分析,以测试水分含量、灰分含量、粗蛋白、纤维、脂肪和矿物质元素。各项分析结果表明,在十个月的采样期内,四个样品的微生物总数在二月份最高,样品 C 的微生物总数最高,为 1.2 X 105 cfu/mL,其次是样品 D,为 7.0 X 104 cfu / mL,样品 B 的微生物总数为 5.8 X 104 cfu / mL,而样品 A 的微生物总数最低,为 4.4 X 104 cfu / mL。九月份的微生物总数最低,样品 C 的微生物总数为 3.7 X 104 cfu / mL,其次是样品 D,为 2.4 X 104 cfu / mL,样品 B 的微生物总数为 8.0 X 103 cfu / mL,而样品 A 的微生物总数最低,为 4.0 X 103 cfu / mL。淡水样品和蛤蜊中存在的微生物大多是来自粪便的大肠菌群,包括:金黄色葡萄球菌、产气肠杆菌、舌螺旋体、蜡状芽孢杆菌、植物乳杆菌、大肠杆菌、水生黄杆菌和变异微球菌。我们得出结论,旱季的微生物负荷高于雨季,这可能是由于雨季水稀释和流速加快所致。结果还表明,蛤蜊的营养价值随季节和微生物负荷密度而变化。我们建议对捕捞蛤蜊的水进行适当的卫生处理,并在食用前将蛤蜊适当煮熟并去除内脏,尤其是在旱季。