所有 Medicare D 部分处方药计划都必须遵循 CMS 制定的规则和法规框架,但经批准的计划可以“与标准 D 部分计划一样好”或“更好”。ISU 与 Humana 的计划经 CMS 批准并遵循 CMS 框架,但总体而言 ISU 计划更胜一筹。ISU D 部分 PDP 计划规定每张处方有最高限额,参与者的最高自付额 (MOOP) 限额为 2,500.00 美元;因此,我们的计划允许覆盖范围差距中的共同保险金额为 30%,而不是标准 D 计划的 25%。个人标准 D 计划通常没有自付最高限额。许多个人标准 D 计划都以会员先支付的免赔额开始。ISU Humana 计划没有会员需要支付的免赔额。我们从共付额或共同保险开始。所有 D 部分计划都有一个初始承保阶段,该承保阶段持续到药品总成本(会员支付的金额加上 Humana 支付的金额)达到 4,660.00 美元为止。在初始阶段,ISU PDP 计划的会员支付共付额或共同保险百分比,但 ISU PDP 计划在初始阶段每 30 天供应的最高金额为 50.00 美元。第二阶段被称为承保“缺口”或“甜甜圈洞”。2011 年之前,D 部分标准框架不包括任何处于第二阶段的承保范围。之所以称为缺口或甜甜圈洞,是因为那里什么都没有!自 2011 年以来,ACA 规则已经填补了所有计划的缺口。缺口承保现在意味着 ACA 药物缺口折扣的开始,即药物成本降低。这种减少并不一定会减少我们的会员在第二阶段支付的费用。对于 ISU 计划,在第二阶段,30% 的共同保险最高限额仍然为 30 天供应的仿制药 10 美元和 30 天供应的首选品牌药物 50 美元。对于非首选品牌或特种药物,共同保险百分比适用,没有 50 美元的上限。因此,如果会员达到了差额,那么一次购买花费 50 美元的处方药在下次购买时可能会花费数百美元。对于所有承保处方,ISU Humana 计划每位会员每年的最高自付费用为 2,500.00 美元。在您的自付药品费用达到 2,500.00 美元后,Humana 将支付您 100% 的总药品费用。框架的各个阶段在 Humana 发送给使用 ISU Humana 计划购买处方药的会员的每个人的“SmartSummaryRx”中有所提及。第三阶段也称为灾难阶段。当药品总成本达到 7,400.00 美元时,此阶段开始。您可以在不达到 ISU Humana 计划的最高自付费用的情况下进入此阶段。如果您尚未达到最高自付费用,您将支付以下两者中较大的金额:5% 或仿制药/多源药物的 4.15 美元/10 美元。35 到年底之前所有其他药物的免税限额或将达到最高 2,500.00 美元。
4。Parkkola A,Harkonen T,Ryhanen SJ,Ilonen J,Knip M. Finnish Pedi-Atric糖尿病R. 1型糖尿病和Phe notype and Phe-notype and Phe-notype and Phe-Notype和New Semain-New Sairnation-type的家族史。糖尿病护理。2013; 36(2):348-354。 5。 Ziegler AG,Danne T,Dunger DB等。 主要预防β细胞自身免疫性和1型糖尿病 - 预防自身免疫性糖尿病(GPPAD)观点的全球平台。 mol代谢。 2016; 5(4):255-262。 6。 Ziegler AG,Rewers M,Simell O等。 血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。 JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2013; 36(2):348-354。5。Ziegler AG,Danne T,Dunger DB等。 主要预防β细胞自身免疫性和1型糖尿病 - 预防自身免疫性糖尿病(GPPAD)观点的全球平台。 mol代谢。 2016; 5(4):255-262。 6。 Ziegler AG,Rewers M,Simell O等。 血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。 JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。Ziegler AG,Danne T,Dunger DB等。主要预防β细胞自身免疫性和1型糖尿病 - 预防自身免疫性糖尿病(GPPAD)观点的全球平台。mol代谢。2016; 5(4):255-262。 6。 Ziegler AG,Rewers M,Simell O等。 血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。 JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2016; 5(4):255-262。6。Ziegler AG,Rewers M,Simell O等。血清转化到多种胰岛自身抗体和儿童糖尿病进展的风险。JAMA。 2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。JAMA。2013; 309(23):2473-2479。 7。 Krischer JP,Lynch KF,Schatz DA等。 遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。 糖尿病学。 2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2013; 309(23):2473-2479。7。Krischer JP,Lynch KF,Schatz DA等。遗传性儿童中与糖尿病相关的自身抗体的6年发病率:泰迪研究。糖尿病学。2015; 58(5):980-987。 8。 Bingley PJ,Boulware DC,Krischer JP。 自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。 糖尿病学。 2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2015; 58(5):980-987。8。Bingley PJ,Boulware DC,Krischer JP。自身抗体对正常葡萄糖耐受性亲属的单个胰岛抗原的影响:其他自身抗体的发展和对1型糖尿病的发展。糖尿病学。2016; 59(3):542-549。 9。 Anand V,Li Y,Liu B等。 胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。 2021; 44(10):2269-2276。 10。 Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。 nat。 基因。 11。2016; 59(3):542-549。9。Anand V,Li Y,Liu B等。胰岛自身免疫性和1型糖尿病的HLA标记:在芬兰,德国,瑞典和美国糖尿病护理中的研究队列研究的联合分析。2021; 44(10):2269-2276。10。Robertson CC,Inshaw JRJ,Onengut-Gumuscu S等。nat。基因。11。精细模拟,跨乳液和基因组分析确定了1型糖尿病的因果变异,细胞,基因和药物靶标。2021; 53(7):962-971。Lambert AP,Gillespie KM,Thomson G等。 人类白细胞抗Gen II类基因型定义的儿童期1型糖尿病的绝对风险:英国基于人群的研究。 J. Clin。 内分泌。 METAB。 2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。Lambert AP,Gillespie KM,Thomson G等。人类白细胞抗Gen II类基因型定义的儿童期1型糖尿病的绝对风险:英国基于人群的研究。J. Clin。 内分泌。 METAB。 2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。J. Clin。内分泌。METAB。 2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。METAB。2004; 89(8):4037-4043。 12。 nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。 糖尿病。 2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。2004; 89(8):4037-4043。12。nguyen C,Varney MD,Harrison LC,Morahan G.高风险1型糖尿病HLA-DR和HLA-DQ类型的定义仅使用三种单核苷酸多态性。糖尿病。2013; 62(6):2135-2140。 13。 Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。 HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。 am。 J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。2013; 62(6):2135-2140。13。Noble JA,Valdes AM,Cook M,Klitz W,Thomson G,Erlich HA。HLA II类基因在胰岛素依赖性糖尿病中的作用:180种高加索,多重家族的分子分析。am。J. Hum。 基因。 1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。J. Hum。基因。1996; 59(5):1134-1148。 14。 Erlich H,Valdes AM,Noble J等。 HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。 糖尿病。 2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。1996; 59(5):1134-1148。14。Erlich H,Valdes AM,Noble J等。HLA DR-DQ单倍型和基因型和1型糖尿病风险:1型糖尿病遗传联盟家族的分析。糖尿病。2008; 57(4):1084-1092。 15。 Hippich M,Beyerlein A,Hagopian WA等。 对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。 糖尿病。 2019; 68(4):847-857。 16。 Bonifacio E,Beyerlein A,Hippich M等。 plos med。 2018; 15(4):E1002548。 17。 proc。 natl。2008; 57(4):1084-1092。15。Hippich M,Beyerlein A,Hagopian WA等。对一般人群和受影响家庭儿童的1型糖尿病风险差异的遗传贡献。糖尿病。2019; 68(4):847-857。16。Bonifacio E,Beyerlein A,Hippich M等。plos med。2018; 15(4):E1002548。 17。 proc。 natl。2018; 15(4):E1002548。17。proc。natl。遗传评分以分层发展多种胰岛自身抗体和1型糖尿病的风险:对儿童的前瞻性研究。Aly TA,IDE A,Jahromi MM等。 1A型糖尿病的极端遗传风险。 学院。 SCI。 U. S. A. 2006; 103(38):14074-14079。 18。 Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J. 对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。 丹麦糖尿病研究小组。 糖尿病学。 1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。Aly TA,IDE A,Jahromi MM等。1A型糖尿病的极端遗传风险。学院。SCI。 U. S. A. 2006; 103(38):14074-14079。 18。 Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J. 对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。 丹麦糖尿病研究小组。 糖尿病学。 1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。SCI。U. S. A.2006; 103(38):14074-14079。 18。 Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J. 对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。 丹麦糖尿病研究小组。 糖尿病学。 1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。2006; 103(38):14074-14079。18。Pociot F,NørgaardK,Hobolth N,Andersen O,Nerup J.对丹麦1型(胰岛素依赖性)糖尿病的家族聚集的基于民族种群的研究。丹麦糖尿病研究小组。糖尿病学。1993; 36(9):870-875。 19。 Sharp SA,Rich SS,Wood AR等。 改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。 糖尿病护理。 2019; 42(2):200-207。 20。 Winkler C,Krumsiek J,Buettner F等。 1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。 糖尿病学。 2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。1993; 36(9):870-875。19。Sharp SA,Rich SS,Wood AR等。改进的1型糖尿病遗传风险评分用于新生儿筛查和事件诊断的遗传风险评分的发展和标准化。糖尿病护理。2019; 42(2):200-207。20。Winkler C,Krumsiek J,Buettner F等。1型糖尿病敏感性基因的特征排名改善了1型腹膜的预测。糖尿病学。2014; 57(12):2521-2529。 21。 Bonifacio E,Weiss A,Winkler C等。 与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。 糖尿病护理。 2021; 44:2260-2268。2014; 57(12):2521-2529。21。Bonifacio E,Weiss A,Winkler C等。与年龄相关的指数下降,在儿童期间多种胰岛自身抗体血清转化的风险下降。糖尿病护理。2021; 44:2260-2268。
摘要——颠覆性技术引领的数字化转型可以帮助组织应对众多挑战,并通过所有业务领域的创新技术提供更好的客户价值。人工智能 (AI) 正在各种商业领域得到应用,预计将成为未来几年营销领域最重要的技术工具之一。本文讨论了人工智能解决方案在营销过程的五个步骤中在营销决策中的预期作用。该研究对 2020 年至 2022 年期间发表的有关人工智能在营销决策中的应用的研究文章进行了系统回顾。然后将确定的应用程序映射到营销过程的五个步骤:分析、战略、战术、客户关系和价值主张创造。研究结果表明,大多数当前的人工智能应用程序都用于营销过程的第一阶段,即了解和预测客户行为,以及创建营销组合的战术阶段。本文最后提出了对营销从业者的建议和进一步研究的建议。
对于理解地壳形成[13–15]和磁性的起源具有重要意义。[16] 在法医学中,材料中的 18 O 测绘有助于追踪动物和人类的地理起源。[17] 在研究固体材料氧化机制的不同方法中,原位环境透射电子显微镜 (TEM) 和原位扫描隧道显微镜对于研究与氧化早期阶段相关的原子级结构变化非常有效。[1,3,5,18,19] 然而,这些原位技术缺乏区分单个氧同位素的灵敏度。同时,对氧同位素高度灵敏的纳二次离子质谱 (SIMS) 和其他基于质谱的技术缺乏 3D 亚纳米级的空间分辨率。 [14,17,20,21] 最近,非原位原子探针断层扫描 (APT) 研究验证了 APT 能够实现材料中 18 O 同位素分布的亚纳米级空间分辨映射。[10,22–25] 然而,将 APT 在亚纳米级空间分辨率下定量映射 18 O 的能力扩展到原位氧化研究尚未得到证实。在这里,我们首次展示了使用 18 O 同位素的原位 APT 分析模型 Fe-18 wt% Cr-14 wt% Ni 模型合金(以下称为 Fe18Cr14Ni)中的氧扩散
▪ 2019 年 6 月 21 日,规划和地方政府部长根据《1993 年发展法》第 46 (1) 条作出声明(以下简称“声明”),涉及拟议开发一条容量高达 330 千伏的高压输电线路,该线路将在南澳大利亚罗伯茨敦和新南威尔士州 (NSW) 边境(190 公里)之间建设。该声明于 2019 年 6 月 27 日刊登在《政府公报》第 2272 页。▪ 2020 年 3 月 19 日,该声明进行了修改,删除了土地分割作为主要开发评估流程所涵盖的要素之一的提及,以使 ElectraNet 能够在作出任何决定之前着手购买拟议的 Bundey 变电站的土地。▪ 根据《1993 年发展法》第 46 和 46C 条,该主要开发提案是环境影响声明 (EIS) 和评估报告的主题。 ▪ 2021 年 12 月 23 日,规划和地方政府部长根据《1993 年发展法》第 48 条授予了临时开发授权。该授权于 2022 年 1 月 6 日在《宪报》第 2 页公布。 ▪ 与 Bundey 变电站有关的临时开发授权保留事项 20 至 28(B 部分)所要求的所有相关文件均已提供,并令相关州机构和地方议会满意。 ▪ 与输电线路、临时设施和辅助基础设施有关的临时开发授权保留事项 20 至 28(B 部分)已结转到本开发授权的保留事项 1 至 10。 ▪ 保留事项 4(范围运营环境管理计划)和 8(原生植被管理、修复和监测计划)已被修改,以反映这些文件与输电线路的建设阶段有关。新的条件 15 和 16 要求准备与输电线路运营阶段有关的完整 OEMP 和 NVMR&MP。▪ 2022 年 4 月 4 日,Trento Fuller(建筑认证师和顾问)根据《2016 年规划、发展和基础设施法》第 118(8)(b) 条,为 Bundey 变电站开发第 1 阶段和第 2 阶段(动员、场地建立、大量土方工程和排水)颁发了符合建筑规则的证书。▪ 2022 年 4 月 29 日,规划部长代表授予了 Bundey 变电站第 1 阶段和第 2 阶段工程的开发授权。
美国反核能源运动于1977年春季发起,当时有1,414名Clamshell联盟活动家占领了Seabrook核电站,并在接下来的12天监禁中。在那两个星期中,核能成为全球公共问题,因为大众媒体的聚焦着重于激进分子锁定在新罕布什尔州的军械库中。支持示威游行在整个美国爆发,在接下来的几个月中,成百上千的新基层反核能直接行动小组开始。翻盖式联盟被认为是新运动的原型。全国各地的激进主义者理想化了翻盖式活动家的成就。,他们在本世纪初,在全国范围内提出了一次针对核能,强大的核能工业的起义,强大的核能工业(由“行动独立性”设定)的目标(由“行动独立性”设定)。在那之前,核电已经得到了公众的认可,这不是一个社会问题。我们想知道他们到底是怎么做到的。我热切期待参加1978年2月的战略会议,来自新英格兰各地的45个clamshell组织者。那个星期五晚上,我希望会遇到一个充满活力的乐观团体,为其成就而感到自豪。我感到震惊的是,盖塞活动的活动家以鞠躬,沮丧和沮丧而到达时,说他们的努力徒劳无功。经过两年的努力,仍在建造Seabrook核电站,独立行动仍然是
(Skuse and Matthew,2015年)这些因素可能是由于缺乏后果思维,回避,反抗,挑战性行为,控制脾气的问题,缺乏同理心,不愿提供解释等等。干预时,至关重要的是,专业人员与孩子的成长年龄联系起来,以便在这种情况下可以理解呈现行为。如果程序有效,至关重要的是,干预措施与儿童的认知能力相匹配(Skuse and Matthew,2015年)。这不是正式的基于证据的评估,而是有助于确定年龄范围量身定制干预措施的主观评估。这是一种有用的工具,可帮助所有专业人员进行适应干预措施以适合孩子的最低功能。定义
黑色素瘤是最致命的皮肤癌。在早期阶段,可以单独通过手术安全治疗。但是,自2011年以来,通过新的有效疗法的黑色素瘤治疗了一场重要的革命。针对检查点抑制剂的靶向治疗和免疫疗法改变了这种疾病的史。迄今为止,超过一半的晚期黑色素瘤患者在5年时还活着;尽管有这一突破,但大约一半的患者仍然对治疗没有反应。由于这些原因,需要新的治疗策略来扩大可以从免疫疗法或与靶向疗法结合结合使用的患者数量。当前的研究旨在防止原发性和获得性抗性,这两者都导致约50%的患者的治疗失败。这可以提高可用药物的有效性,并允许评估新组合和新靶标。所研究的主要途径和分子是IDO抑制剂,TLR9激动剂,STING,LAG-3,TIM-3,HDAC抑制剂,Pegypated IL-2(NKTR-214),GITR和腺苷途径抑制剂,目前是3000次试验的抑制剂(等等)。其他有希望的策略是癌症疫苗和溶瘤病毒。另一种方法是将免疫细胞(DC,T细胞和NK细胞)隔离和去除患者的血液或肿瘤中,添加特定的基因片段,与生长因子中的培养物扩展,并重新接口到同一患者中。tils,TCR基因转移和CAR-T治疗遵循这种方法。在本文中,我们概述了黑色素瘤疗法的当前状态,选择治疗的临床原理以及新的免疫疗法方法。
D614G 突变据称增强了病毒在人类呼吸道组织中的复制,增强了病毒在受感染仓鼠上呼吸道中的存活率,并增加了对中和的敏感性。看来,这种突变可能增加了病毒的传染性 [9]。Plante 等人的研究强调了这种突变在病毒传播、疫苗效力和抗体治疗中的重要性 [10]。有人指出,针对 COVID-19 的疫苗也有望对抗新型 G 毒株 [11]。此外,涉及仓鼠的研究得出结论,D614G 突变可能不会降低疫苗在临床环境中预防 COVID-19 的能力,并且在临床开发之前,应针对病毒的循环变体评估中和抗体。