小鼠Luis Boero* 1,2,Hao Wu* 1,2,3,Joseph D. Zak 4,Paul Masset 5,Farhad Pashakhanloo 1,2,Siddharth Jayakumar 1,2美国剑桥,美国2号哈佛大学蜂窝生物学,美国剑桥大学,美国3化学与化学生物学系,哈佛大学,美国剑桥,美国4伊利诺伊州伊利诺伊大学生物科学系美国剑桥的哈佛大学工程和应用科学8肯普纳自然与人工智能研究所,哈佛大学,美国剑桥 *这些作者贡献了同样的贡献。†与Venkatesh N. Murthy(vnmurthy@fas.harvard.edu)的通信,自然界中的抽象气味线索由于动荡的运输而稀疏且高度波动。为了研究动物如何看待这些间歇性线索,我们制定了一项行为任务,在该任务中,头部约束小鼠根据几秒钟内随机提出的离散气味脉冲的总数做出了二进制决策。小鼠很容易学会这项任务,并且他们的性能被广泛使用的决策模型很好地描述。logistic在呼吸周期内针对气味脉冲时间的二进制选择的逻辑回归表明,小鼠对吸入期间刺激的感知重量更高,而不是呼气,这种相位依赖性与嗅觉感觉神经元中反应的幅度密切相关。前梨状皮层(APCX)神经元对气味脉冲的种群反应也通过呼吸阶段进行调节,尽管单个神经元表现出不同的相位依赖性水平。单个APCX神经元对气味脉冲反应,导致表示有感觉证据的特征,但没有其积累。我们的研究表明,小鼠可以在数十个呼吸中整合间歇性的气味信号,但是感觉输入的呼吸调节对信息获取施加了限制,即皮质电路无法克服改善行为。
摘要:众所周知,具有自适应机制已知。视觉也不例外,其灵敏度的输入依赖性变化。最近的动物工作表明,视觉皮层中神经元之间的连通性增强。本实验的目的是评估一种人类模型,该模型通过快速的视觉刺激来无创地改变人类视觉皮层中N1b成分的振幅。十九个参与者(M = 24岁;男性为52.6%)完成了涉及在视觉场中双侧呈现的黑白逆转棋盘的快速视觉刺激范式。eeg数据,该数据由四个主要阶段,tetanus块,光刺激,tetanus早期和tetanus组成。计算了t前,tetanus的N1b成分的幅度,te虫早期的tetanus和tetanus后期视觉诱发电位。通过从tetanus早期和晚期减去teTanus n1b振幅来计算N1b振幅的变化。结果表明,前tetanus n1b(M = -0.498 µ V,SD = 0.858)和N1B早期(M = -1.011 µ V,SD = 1.088),T(18)= 2.761,P = 0.039,D = 0.633,在tetanus n1b和n1b晚期之间没有观察到差异(p = 0.36)。总而言之,我们的发现表明,有可能诱导人类视觉上的视觉诱发潜在的N1b波形的幅度变化。如果是这样,这将允许检查增强的神经连通性及其与多种人类感觉刺激和行为的相互作用。还需要进行其他工作来证实这项研究中观察到的N1b成分的增强是由于在先前动物研究中观察到的大脑认知结构中表现出的长期增强神经联系所必需的相似机制。
不同类别的视觉刺激激活人脑中的不同反应。这些信号可以用脑电图捕获,以在诸如脑部计算机界面(BCI)之类的应用中利用。然而,由于脑电图的信噪比低,单审数据的准确分类是具有挑战性的。这项工作介绍了一个基于多头自我注意力的EEG-Convtranformer网络。与其他变压器不同,该模型结合了自我注意事项以捕获区域间相互作用。它进一步扩展到辅助卷积过滤器,并以多头注意力作为学习时间模式的单个模块。实验结果表明,在五个不同的视觉刺激分类任务上,EEG-ConvTransFormer在最新技术上实现了分类精度的提高。最后,对头间多样性的定量分析在表示子空间中的相似性也很低,这强调了多头关注的隐式多样性。
在本研究中,我们提出了一种用于基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的新型混合视觉刺激,该刺激将各种周期性运动融入传统的闪烁刺激 (FS) 或模式反转刺激 (PRS)。此外,我们研究了每种 FS 和 PRS 的最佳周期运动,以增强基于 SSVEP 的 BCI 的性能。通过根据四个不同的时间函数(用无、平方、三角和正弦表示)改变刺激的大小来实现周期性运动,总共产生八种混合视觉刺激。此外,我们开发了滤波器组典型相关分析 (FBCCA) 的扩展版本,这是一种用于基于 SSVEP 的 BCI 的最先进的无需训练分类算法,可提高基于 PRS 的混合视觉刺激的分类准确性。 20 名健康个体参加了基于 SSVEP 的 BCI 实验,以区分四种不同频率的视觉刺激。评估了平均分类准确率和信息传输率 (ITR),以比较基于 SSVEP 的 BCI 对不同混合视觉刺激的性能。此外,还评估了用户对每种混合视觉刺激的视觉疲劳程度。结果,对于 FS,当除 3 秒外的所有窗口大小都加入正弦波形的周期运动时,报告的性能最高。对于 PRS,方波的周期运动在所有测试窗口大小中显示出最高的分类准确率。两种最佳刺激之间的性能没有观察到显著的统计差异。据报道,正弦波周期运动的 FS 和方波周期运动的 PRS 的平均疲劳分数分别为 5.3 ± 2.05 和 4.05 ± 1.28。因此,我们的结果表明,与传统的 FS 和 PRS 相比,具有正弦波周期运动的 FS 和具有方波周期运动的 PRS 可以有效提高 BCI 性能。
在高峰时段,一名行人穿过一条街道,经常看起来并听潜在的危险。当他们听到几个不同的角时,他们将鸣喇叭的汽车定位,并决定是否需要修改其运动计划。行人如何使用此听觉信息在视觉空间中挑选相应的汽车?这样的分布式表示形式的集成称为分配问题,必须解决它以在跨感觉模态范围内整合不同的表示形式。在这里,我们识别并分析了分配问题的解决方案:在相关大脑区域成对的一个或多个常见刺激特征(例如,在视觉和听觉系统中都表示对汽车空间位置的估计。我们表明该解决方案的可靠性如何取决于刺激集的不同特征(例如,集合的大小和刺激的复杂性)以及分裂代表的细节(例如,每个刺激表示的精度和重叠信息的量和重叠信息的量)。接下来,我们在生物学上合理的接收场代码中实现了该解决方案,并显示该代码使用的神经元和尖峰数量的约束迫使大脑在局部和灾难性错误之间进行权衡。我们表明,当有许多尖峰和神经元可用时,尽管有分配错误的风险,但在多个大脑区域中代表单个感觉方式的刺激可以更可靠地完成。最后,我们表明,即使以两种不同的表示格式接收输入,馈送神经网络也可以学习对分配问题的最佳解决方案。我们还讨论了有关人类工作记忆文献中分配错误的相关结果,并表明我们理论的几个关键预测已经得到支持。
神经影像学通过还原主义刺激来提高我们对人类心理学的理解,这些刺激通常与大脑自然遇到的信息不像信息。,它主要通过分析“静止状态”数据的分析来提高我们对大脑网络组织的理解,而网络功能无法确定标记。我们公开使用“自然主义神经影像学数据库”(NNDB V1.0),以便在更完整的生态条件下对大脑进行更完整的了解,在此期间可以标记网络。86名参与者接受了行为测试,并观看了10部全长电影之一,同时获得了功能性磁共振成像。结果显示的数据显示为高质量,具有良好的信号噪声比,几乎没有异常值和低运动。数据驱动的功能分析提供了进一步的数据质量证据。他们还展示了准确的时间表/电影对齐方式以及如何使用电影注释来标记网络。NNDB可用于用标准的神经影像学方法来回答以前未解决的问题,从而提高了我们对大脑在现实世界中的工作方式的了解。
大脑计算机界面(BCIS)是传统上用于医学的系统,旨在与大脑相互作用以记录或刺激神经元。尽管有好处,但文献表明,专注于神经刺激的侵入性BCI当前的脆弱性使攻击者能够控制。在这种情况下,神经网络攻击成为能够通过进行神经过度刺激或抑制来破坏自发神经活动的威胁。先前的工作在小型模拟中验证了这些攻击,其神经元数量减少,缺乏现实世界中的复杂性。Thus, this work tackles this limitation by analyzing the impact of two existing neural attacks, Neuronal Flooding (FLO) and Neuronal Jamming (JAM), on a complex neuronal topology of the primary visual cortex of mice consisting of approximately 230,000 neurons, tested on three realistic visual stimuli: flash e ff ect, movie, and drifting gratings.在每个刺激的三个相关事件中评估了每次攻击,还测试了攻击25%和50%神经元的影响。根据尖峰和偏移百分比的数量,结果表明,攻击对电影产生了最大的影响,而黑暗和固定事件是最强大的。尽管两种攻击都可以显着发作神经活动,但果酱通常更具破坏性,产生更长的时间延迟,并且患病率更高。最后,果酱不需要改变许多神经元以显着发神经活动,而FLO的影响随着攻击的神经元数量而增加。
即使在富裕或混乱的环境中,大脑在处理感官输入方面也表现出色。安装示例将其归因于创建环境的复杂内部模型,这些内部模型借鉴了展开的感觉输入中的统计结构。了解这种模型的发生方式和地点是统计学习中的核心问题。未知该建模如何应用于随机感觉信号。在这里,我们通过过渡概率将条件关系确定为支持随机听觉流的编码的隐式结构。我们通过将信息理论原理应用于高频活动(75至145 Hz),使用颅内脑电图记录评估这种代表。我们演示了大脑如何在听觉系统之外的网络中连续构建随机刺激之间的条件关系,包括分层组织,包括时间,额叶和海马区域。我们的结果表明,即使在随机的刺激呈现下,层次结构上组织的大脑区域连续尝试通过保持感觉输入的概率表示来进行订购信息。
现实世界中的交流本质上是多模态的。在交谈时,视力正常和听力正常的人们通常使用听觉和视觉线索来理解对方。例如,物体在空间中移动时可能会发出声音,或者我们可以使用一个人的嘴巴运动来更好地理解他们在嘈杂的环境中所说的话。尽管如此,许多神经科学实验仍依赖单模态刺激来了解大脑中感官特征的编码。因此,在自然环境中,视觉信息对听觉信息编码的影响程度以及反之亦然尚不清楚。在这里,我们通过记录 11 名受试者在视听 (AV)、仅视觉 (V) 和仅音频 (A) 条件下收听和观看电影预告片时的头皮脑电图 (EEG) 来解决这个问题。然后,我们拟合线性编码模型,描述大脑反应与刺激中的声学、语音和视觉信息之间的关系。我们还比较了当刺激以原始 AV 格式呈现时和当删除视觉或听觉信息时,听觉和视觉特征调谐是否相同。在这些刺激中,视觉和听觉信息相对不相关,包括场景中的口头叙述以及动画或真人角色在有脸和无脸的情况下说话。对于这种刺激,我们发现在 AV 和仅 A 条件下听觉特征调谐相似,同样,当呈现刺激时有音频(AV)和删除音频(仅 V)时视觉信息的调谐也相似。在交叉预测分析中,我们调查了在 AV 数据上训练的模型是否能与在单峰数据上训练的模型类似地预测对 A 或 V 测试数据的响应。总体而言,使用 AV 训练和 V 测试集的预测性能与使用 V 训练和 V 测试集的预测性能相似,这表明听觉信息对 EEG 的影响相对较小。相比之下,使用 AV 训练和仅 A 测试集的预测性能略差于使用匹配的仅 A 训练和仅 A 测试集。这表明视觉信息对 EEG 的影响更大,尽管这在衍生特征调整中没有质的差异。实际上,我们的结果表明研究人员可能会受益于多模态数据集的丰富性,然后可以使用这些数据集来回答多个研究问题。
节奏刺激,如光,声音和触觉,可以调节大脑功能并改善注意力(例如注意力)[3,12,48,63]。现有方法主要使用了不可磨损或高度专业的设备,但智能手表和智能眼镜等可穿戴设备可能会用于提供有节奏的刺激并调节大脑功能。这种方法提供了许多令人兴奋的可能性:首先,可以使用简单的软件下载来提供认知增强干预措施,从而可以使用已广泛部署和社会可接受的商业可穿戴设备,从而可以轻松分散这些干预措施。第二,因为它们几乎总是存在于用户的身体上,因此可以轻松地进行可穿戴设备,以便在用户需要时提供认知增强,并有可能自动检测到何时需要刺激。在这项研究中,我们选择专注于通过有节奏刺激可穿戴设备提高注意力。注意力可以定义为选择性分配认知资源为特定内部或外部实体的能力[43],并且它是日常生活中的关键认知功能[11]。尽管已经开发出许多方法来提高注意力,但注意力的失败仍然代表了社会的重大负担。例如,大多数交通事故涉及注意力失败[64]。可穿戴设备的安全性,在许多不同情况下都是安全,不引人注目且可用的设备,是满足某些未满足需求的潜在潜在方法。成功的设备必须有效,易于使用,在社会上可以接受和舒适。迄今为止,尚未对注意力的可穿戴节奏刺激的有效性和用户经验进行了很好的研究。因此,这项工作旨在回答以下两个研究问题。