伊拉克摩苏尔大学工程学院电气工程系电子邮件:mtyaseen@uomosul.edu.iq(M.T.Y.); aminaalrawy@uomosul.edu.iq(a.a.f.); fawaazyasen@uomosul.edu.iq(F.Y.A。)*通讯作者摘要 - 该论文提出了增加导致道路事故的车辆总数的问题。车辆临时网络(VANET)已在基础设施中开发。本研究建议使用Vanet网络与车辆,路边单元(RSU)和网络服务器进行通信。提出的方法通过基于Omnet ++和Sumo Simulators内部框架(静脉)的地图执行IEEE 802.11p的基本参数来正确模拟Vanet,以实现和模拟车辆路线的规划流量策略。建议的技术的主要优势是使车辆能够相互通信或在基础架构上进行交流,以发送和接收各种类型的警告和信息消息。在本文中做出了两项重大贡献:通过减少车辆的CO 2排放和减少道路拥堵的CO 2来降低空气的污染水平,以及模拟车辆路线计划流量的技术贡献。我们的技术能够监视在高速公路上和紧急制动的情况下测试的空气污染和建筑模拟。每辆车可以通过向网络服务器发送数据包请求并等待包含新路径的响应来请求最短路由。主要的性能参数指标是指在不同时间在不同时间的速度和加速器等车辆中的数据交换。在每种情况下更改路径长度时,分析了车辆的速度,加速度,CO 2发射和RSU的总丢失数据包。在模拟中,使用100辆车在3,400米长的高速公路上以14 km/h的速度行驶,网络尺寸为(3000×3000)m。通过100辆车的旅行时间为300秒,RSU的总丢失的数据包为61,总CO 2排放量为3,1548 gm/英里,获得了仿真结果。模拟结果的优点为预防事故,增强无线基础设施和降低污染水平的车辆提供了更安全的道路。
端粒(ALT)途径的替代延长可在很大一部分癌症中保持端粒长度,这些癌症与临床不良结局相关。因此,对于为Alt Cancer制定新的治疗策略,对ALT机制有更好的了解。SUMO修饰端粒蛋白与Alt端粒相关PML体(APB)的形成,其中端粒聚集并富含DNA修复蛋白,以促进ALT中的同源性远距离DNA合成。但是,仍然未知(如果是这样),Sumo是否支持ALPB形成。在这里,我们表明,含有DNA修复蛋白的相扑凝结物在没有APB的情况下可以维持端粒。在缺乏APB的PML基因敲除Alt细胞系中,我们发现表现为PML和APB的ALT特征所必需的Sumoylation。化学诱导的端粒靶向相扑会在PML无效细胞中产生冷凝物的形成和ALT特征。这种效应需要Sumoylation和Sumo相互作用基序(SIMS)之间的相互作用。从机械上讲,Sumo诱导的效应与端粒处的DNA修复蛋白的积累有关,包括Rad52,Rad51AP1,RPA和BLM。此外,rad52可以以相关方式与BLM解旋酶合作,在端粒上富集相分离,并在端粒上富集Sumo,并促进端粒DNA合成。共同表明,Sumo凝结物形成了DNA修复因子之间的协作,以支持没有PML的ALT端粒维护。鉴于Sumoylation抑制剂在癌症治疗中的有前途的影响,我们的发现表明它们在扰动端粒癌细胞中的驱动端粒维持中的潜在使用。
与大多数生物体一样,植物也具备复杂而精巧的分子机制来应对不断变化的环境。在翻译后修饰 (PTM) 中,小肽(如泛素或 SUMO(小泛素相关修饰物))的结合能够快速有效地适应各种非生物和生物胁迫条件。SUMO 化过程涉及使用类似于泛素化的分级多酶级联将 SUMO 共价附着到目标蛋白上(图 1)[ 1 ]。这种可逆修饰可导致构象变化、改变蛋白质相互作用并影响修饰蛋白质的整体功能,包括稳定性、亚细胞定位和转录调控。除了与目标蛋白结合之外,SUMO 还能够与许多含有 SUMO 相互作用基序 (SIM) 的蛋白质非共价相互作用。将相同或不同蛋白质中的 SUMO 化位点与 SIM 相结合,有助于形成蛋白质宏观结构,从而通过将其他 SUMO 靶标募集到有利于 SUMO 化的环境中来增强 SUMO 化 [1]。拟南芥基因组含有 8 个 SUMO 基因,但只有 4 个得到表达(AtSUMO1/2/3/5)。几乎相同的 AtSUMO1/2 是 SUMO 原型,因为它们是哺乳动物 SUMO2/3 的最近同源物。SUMO 蛋白在发育和防御过程中的时空表达和功能有所不同 [2]。植物通常表达高水平的高度保守的 SUMO 异构体(AtSUMO1/2)和至少一种弱表达的非保守异构体(AtSUMO3/5)。
摘要:小泛素样修饰蛋白(SUMO)是一种高度保守的翻译后修饰蛋白,主要存在于真核生物中,广泛表达于肝脏等不同组织中。SUMO化作为一种必需的翻译后修饰,参与细胞许多必要的调控,在DNA修复、转录调控、蛋白质稳定性、细胞周期进程等过程中发挥重要作用。越来越多的证据表明,SUMO化与肝细胞癌(HCC)密切相关,肝组织炎症中SUMO的高表达可能导致HCC的致癌作用,同时SUMO化还会上调HCC的增殖和存活,HCC的迁移、侵袭和转移,肿瘤微环境以及耐药性。本文就SUMO化在肝癌中的作用进行综述。此外,还讨论了调节SUMO的天然化合物和靶向SUMO的药物在临床试验中的应用。考虑到SUMO蛋白在HCC发生中的关键作用,药物调控SUMO化可能成为HCC治疗、预后监测和辅助化疗的潜在靶点。
Sumo,于1996年发现,在真核生物中广泛表达,以调节靶蛋白定位,活性以及通过共价修饰底物蛋白质与其他生物大分子的相互作用(Chang和Yeh,2020)。由人类基因组编码的五个不同的SUMO蛋白,包括SUMO1,SUMO2,SUMO3,SUMO4和SUMO5。sumo1,sumo2和sumo3是主要的SUMO蛋白,而SUMO4和SUMO5的表达仅限于特定组织(Kukkula等,2021)。SUMO2和SUMO3之间的氨基酸序列为97%同源,而它们与SUMO1仅具有50%同源性(Gareau and Lima,2010年)。因为SUMO2和SUMO3不能用抗体区分。这两个同工型共同称为SUMO2/3(Hickey等,2012)。不同的氨基酸序列会导致SUMO1和SUMO2/ 3修饰不同的底物(Shen等,2006)。作为关键蛋白质后翻译改性(PTM),Sumoylation参与了各种生物学过程,包括基因表达,DNA复制/修复,RNA处理,RNA加工和核总质质转运。sumoylation是一种动态且可逆的酶促级联反应过程,它是由Sumo特异性激活酶(E1; SAE1和SAE2),结合酶(E2; UBC9)和连接酶(E3)(E3)(Zhao,2018)催化的。Sumoylation过程包括四个阶段:成熟,激活,结合和连接(Ryu等,2020)。相互结合途径的第一步是通过水解ATP裂解其COOH末端,以暴露共轭所需的Diglycine(GG)残基。第二,成熟的相扑蛋白通过与激活酶E1结合而激活。然后将相扑蛋白转移到共轭酶E2中。最后,Sumo在连接酶E3的辅助下与底物上的特异性赖氨酸残基(K)形成异肽键(图1)。目标
Alexander Dema 1,2,3,RababA。Alexander Dema 1,2,3,RababA。
核苷类似法替滨(或5-Aza-DC)用于治疗几种血液癌。将其三磷酸化并掺入DNA后,5-Aza-DC诱导共价DNA甲基转移酶1 DNA - 蛋白交联(DNMT1-DPC),从而导致DNA低甲基化。然而,5-aza-DC的临床结果有所不同,复发很常见。使用基因组尺度CRISPR/CAS9屏幕,我们绘制确定5-Aza-DC灵敏度的因素。毫无疑问,我们发现DCMP Deaminase DCTD的丢失会引起5-AZA-DC抗性,这表明5-Za-dump的产生是细胞毒性的。结合了DCTD脱氧细胞中随后的遗传筛选的结果,以及鉴定DNMT1-DPC-近端蛋白质组的鉴定,我们发现了泛素和SUMO1 E3连接酶,TOPOSE,TOPORS,TOPORS,TOPORS,TOPORS,作为新的DPC修复因子。TOPORS被招募到Sumoymet的DNMT1-DPC并促进其降解。我们的研究表明,当DPC修复受到损害时,5-Aza-DC诱导的DPC会引起细胞毒性,而野生型细胞中的细胞毒性则来自扰动的核苷酸代谢,潜在地奠定了未来对预测性生物标记治疗的基础的基础。
抑制或稳定有丝分裂中的 SUMO 化都会导致染色体分离缺陷,这表明蛋白质的动态有丝分裂 SUMO 化对于维持基因组的完整性至关重要。Polo 样激酶 1 - 相互作用检查点解旋酶 (PICH) 是一种有丝分裂染色质重塑酶,它通过三个 SUMO 相互作用基序 (SIM) 与 SUMO 化的染色体蛋白相互作用,以控制它们与染色体的结合。使用条件性 PICH 耗竭/PICH 替换的细胞系,我们发现有丝分裂缺陷与 PICH 对 SUMO 化染色体蛋白的功能受损有关。PICH 的重塑活性或 SIM 缺陷会延迟有丝分裂进程,这是由纺锤体组装检查点 (SAC) 激活引起的,这由着丝粒处 Mad1 焦点的持续时间延长所表明。通过对染色体 SUMO 化蛋白(其丰度受 PICH 活性控制)进行蛋白质组学分析,确定了可解释 SAC 激活表型的候选蛋白。在已确定的候选蛋白中,PICH 缺失时 Bub1 着丝粒丰度会增加。我们的研究结果证明了 PICH 和 SAC 之间的新关系,其中 PICH 直接或间接影响着丝粒上的 Bub1 关联,并影响 SAC 活性以控制有丝分裂。
CRISPR/Cas9 是一种流行的基因组编辑技术。尽管被广泛使用,但人们对这种原核系统在人类中的行为知之甚少。真核 Cas9 表达的一个不良后果是脱靶 DNA 结合导致诱变。更安全地在临床上实施 CRISPR/Cas9 需要更好地了解控制 Cas9 在人类中行为的调节机制。在这里,我们报告了我们发现的 Cas9 SUMO 化和泛素化,这是首次描述的这种酶的翻译后修饰。我们发现 Cas9 上的主要 SUMO2/3 结合位点是 K848,这是 HNH 核酸酶结构域中一个关键的带正电荷的残基,已知它与靶 DNA 相互作用并导致脱靶 DNA 结合。我们的结果表明,Cas9 泛素化通过蛋白酶体降解导致稳定性降低。通过将 K848 转化为精氨酸或药理学抑制细胞的 SUMO 化来阻止 Cas9 SUMO 化可增强酶的周转率并降低向导 RNA 指导的 DNA 结合效力,这表明该位点的 SUMO 化可调节 Cas9 的稳定性和 DNA 结合。需要进行更多研究才能充分了解这些修改对 Cas9 特异性的影响。