大规模人工智能的挑战 DGXA100 和 Selene 关于 Selene 存储架构的讨论 合成和真实应用性能 客户端缓存:工作负载性能的新功能?
NVIDIA DGX SUPERPOD™带有NVIDIA DGX™B200系统是人工智能(AI)的下一代数据中心体系结构。旨在提供在AI,高性能计算(HPC)和混合应用程序中解决高级计算挑战所需的计算性能水平,其中两者合并以提高预测性能和时间的时间。DGX SuperPod基于NVIDIA建造的基础架构,用于内部研究目的,旨在解决当今最具挑战性的计算问题。基于DGX SuperPod体系结构的系统已在全球客户数据中心和云服务提供商处部署。
NVIDIA DGX SuperPOD™ 搭配 NVIDIA DGX™ H200 系统是新一代人工智能 (AI) 数据中心架构。旨在提供解决 AI、高性能计算 (HPC) 和混合应用中的高级计算挑战所需的计算性能水平,将两者相结合以提高预测性能和解决问题的时间。DGX SuperPOD 基于 NVIDIA 为内部研究目的构建的基础设施,旨在解决当今最具挑战性的计算问题。基于 DGX SuperPOD 架构的系统已部署在世界各地的客户数据中心和云服务提供商中。
随着深度学习网络和训练数据的复杂性呈指数级增长,人工智能研究人员的计算需求也不断增加。过去的训练仅限于一台或几台 GPU,通常是在工作站中进行。如今的训练通常使用数十台、数百台甚至数千台 GPU 来评估和优化不同的模型配置和参数。此外,组织中有多名人工智能研究人员,他们都需要同时训练多个模型。这种大规模的系统对人工智能研究人员来说可能很新奇,但这些装置一直是世界上最重要的研究机构和学术界的标志,推动了几乎所有类型的科学研究的创新。
随着深度学习网络和训练数据的复杂性呈指数级增长,人工智能研究人员的计算需求不断增加。过去的训练仅限于一个或几个 GPU,通常是在工作站中进行。如今的训练通常使用数十个、数百个甚至数千个 GPU 来评估和优化不同的模型配置和参数。此外,组织有多个人工智能研究人员,他们都需要同时训练多个模型。如此大规模的系统对人工智能研究人员来说可能很新奇,但这些设备传统上一直是世界上最重要的研究机构和学术界的标志,推动了几乎所有类型的科学研究的创新。