由于其无与伦比的定时分辨率和量子效率,超导纳米线单光子探测器(SNSPD)已成为Quantum Optics的主要技术。SNSPD可以以高于5 t的磁场的高速率以极高的检测效率运行,而深色计数速率接近零。效果,以新型的超导电子设备作为混合低温性驱动器读取结构,以开发低功率的冷冻量读数ASIC。由于纳米线是核和粒子物理领域中相对较新的技术,因此拟议的研发计划将研究超导纳米线传感器,超导电子设备以及原型Crocecmos Front-End End End ASIC的辐射硬度。我们将在高背景辐射环境中运行时测试这些设备的性能。我们还将研究暴露于强烈的电子,中子和伽马辐射来源的超级传导设备的辐射硬度,以识别传感器的失效模式,否则,预计会很难辐射。
我们的团队开发了一种新型超导双环干涉仪(也称为 bi-SQUID),并获得了专利,这种干涉仪可以产生专门设计用于表现出高度线性响应的磁通量传感器。我们的 bi-SQUID 由基于近中观 Cu 约瑟夫森结的铝双环 bi-SQUID 组成。我们还预计,在更高的临界温度下运行的其他超导材料也是可行的。这种方案为传统的基于隧道结的干涉仪提供了一种替代的制造方法,其中结特性以及因此的磁通量对电压和磁通量对临界电流的器件响应可以通过金属弱连接的几何形状进行大量且轻松的调整。我们的 SQUID 系统已经在其响应的线性度方面表现出了巨大的改进,并且由于我们独特的专利设计,我们预计,如果需要,可以在运行过程中进一步提高 bi-SQUID 器件的性能。因此,如果用来替代目前在多通道超导生物磁系统中使用的传统SQUID,我们开发和测试的双SQUID几何结构有望提供一种设计,该设计可能能够为医疗应用提供下一代高灵敏度和高分辨率的超导磁传感器。
高保真量子纠缠是量子通信和分布式量子计算的关键资源,可实现量子态隐形传态、密集编码和量子加密。然而,通信信道中的任何退相干源都会降低纠缠保真度,从而增加纠缠态协议的错误率。纠缠纯化提供了一种缓解这些非理想性的方法,它将不纯态提炼成更高保真度的纠缠态。在这里,我们展示了两个远程超导量子节点之间共享的贝尔对的纠缠纯化,这两个节点通过一条 1 米长的中等损耗超导通信电缆连接。我们使用纯化过程来校正由电缆传输引起的主要振幅阻尼误差,对于更高的阻尼误差,保真度最高可提高 25%。纯化实现的最佳最终保真度为 94.09!0.98%。此外,我们同时使用动态解耦和 Rabi 驱动来保护纠缠态免受局部噪声的影响,将有效量子比特失相时间增加了 4 倍,从 3 微秒增加到 12 微秒。这些方法展示了在超导量子通信网络中生成和保存非常高保真度纠缠的潜力。
量子纠错 (QEC) 是容错量子计算的核心构建块,但 QEC 代码的设计可能并不总是与底层硬件匹配。为了解决量子硬件和 QEC 代码之间的差异,我们提出了一个综合框架,可以在超导量子架构上实现和优化表面代码。具体来说,我们将表面代码合成分为三个关键子程序。前两个子程序优化数据量子位和辅助量子位(包括综合征量子位)在连通性受限超导架构上的映射,而最后一个子程序通过重新安排综合征测量来优化表面代码执行。我们在主流超导架构上的实验证明了所提出的综合框架的有效性。特别是,由所提出的自动综合框架合成的表面代码可以实现与手动设计的 QEC 码相当甚至更好的纠错能力。
1 中国科学技术大学合肥国家微尺度物质科学研究中心、现代物理系,安徽合肥 230026 2 中国科学技术大学中国科学院上海分中心量子信息与量子物理卓越创新中心,上海 201315 3 上海量子科学研究中心,上海 201315 4 中国科学院物理研究所,北京 100190 5 中国科学院大学物理学院,北京 100190 6 日本理化学研究所理论量子物理实验室,埼玉县和光市 351-0198,日本 7 松山湖材料实验室,广东东莞 523808 8 中国科学院大学中国科学院拓扑量子计算卓越创新中心,北京 100190
多粒子纠缠态是量子信息处理和量子计量的重要资源。特别是,非高斯纠缠态被预测比高斯态具有更高的精密测量灵敏度。在计量灵敏度的基础上,传统的线性拉姆齐压缩参数 (RSP) 可以有效地表征高斯纠缠原子态,但对于范围更广、灵敏度更高的非高斯态则无效。这些复杂的非高斯纠缠态可以通过非线性压缩参数 (NLSP) 进行分类,它是 RSP 对非线性可观测量的推广,可通过 Fisher 信息识别。然而,NLSP 从未通过实验测量过。使用 19 量子比特可编程超导处理器,我们报告了在其非线性动力学过程中产生的多粒子纠缠态的表征。首先,我们选择 10 个量子比特,通过单次读取几个不同方向的集体自旋算子来测量 RSP 和 NLSP。然后,通过提取所有 19 个量子比特随时间演化状态的 Fisher 信息,我们观察到超过标准量子极限的 9.89 + 0.28 − 0.29 dB 的较大计量增益,这表明多粒子纠缠程度很高,可实现量子增强相位灵敏度。得益于高保真全控制和可寻址单次读取,具有互连量子比特的超导处理器为设计和基准测试可用于量子增强计量的非高斯纠缠态提供了理想平台。
与环境相互作用的开放量子系统表现出由耗散和相干哈密顿量演化相结合描述的动力学。总之,这些效应由刘维尔超算子捕获。刘维尔(一般非厄米)的退化是异常点,当系统接近稳定状态时,它们与临界动力学有关。我们使用与工程环境耦合的超导传输电路来观察两种不同类型的刘维尔异常点,它们要么是由能量损失和退相干的相互作用引起的,要么纯粹是由于退相干引起的。通过实时动态调整刘维尔超算子,我们观察到非厄米性引起的手性状态转移。我们的研究从刘维尔异常点的角度激发了对开放量子系统动力学的新认识,使非厄米动力学能够应用于开放量子系统的理解和控制。
耗散在自然界中普遍存在;例如原子核的放射性衰变和吸收介质中的波传播,耗散是这些系统与不同环境自由度耦合的结果。这些耗散系统可以用有效非厄米汉密尔顿量进行现象学描述,其中引入非厄米项来解释耗散。非厄米性导致复杂的能谱,其虚部量化系统中粒子或能量的损失。非厄米汉密尔顿量的简并性称为异常点 (EP),其中特征值和相关的特征态合并 [1,2]。 EP的存在已在许多经典系统中得到证明[3-11],并应用于激光模式管理[12-14]、增强传感[15-20]和拓扑模式传输[21-24]。
摘要 - 在最近推出的欧洲合作中,正在调查用于龙门和加速器(同步器)的内部离子治疗磁铁,在欧洲H2020 Hitri Plus和I.Fast计划的框架中,该合作已为超导磁铁提供了一些用于工作包的资金。超导磁体的设计和技术将用于离子治疗同步器,尤其是 - 尤其是龙门,作为430 MeV/nucleon离子(C-ION)的参考光束,具有10个离子/脉冲。磁体的直径约为60-90毫米,4至5 t峰值峰值,磁场的变化约为0.3 t/s,质量良好。本文将说明协作和技术计划的组织。各种超导体选项(LTS,MGB 2或HTS)和不同的磁铁形状,例如经典的Costheta或创新的Canted Costheta(CCT),具有弯曲的多功能(偶极子和四极管),在评估中,CCT为基线。这些研究应为现有设施的新超导龙门设计设计提供设计投入,并在更长的时间范围内,用于将新的强子治疗中心放置在东南欧(Seeiist Project)。
摘要。超导谐振器具有高品质因数,因此存储能量的衰减时间更长,因此可提供卓越的性能。这些超导谐振器的一个新兴应用是量子计算和量子信息科学,它使我们能够探索和深化对物质的理解,而这些发现可能无法通过传统计算和技术进行探索。量子处理架构使用在微波范围内工作的谐振器和互连电路,以及超导带状线技术和低噪声电子设备进行切换和通信。可以通过将这些设备嵌入三维谐振器中来延长相干时间,从而提高这些设备的性能,从而通过降低错误率并在量子态衰减之前允许更多操作(计算)来提高设备的实用性。在这里,我们简要回顾了当前用于量子计算的微波技术以及提高量子比特相干时间的进展。