本文简明扼要地回顾了超导磁能存储 (SMES) 系统在可再生能源应用中的使用情况,以及随之而来的挑战和未来的研究方向。介绍了 SMES 的简要历史和工作原理。此外,还讨论了 SMES 的主要组成部分。使用书目软件分析了与 SMES 相关的重要关键词,这些关键词来自近期在知名期刊上发表的 1240 篇最相关的超导磁能存储系统研究。将 SMES 与其他竞争性储能技术进行了比较,以揭示 SMES 相对于其他可行储能系统的现状。此外,还回顾了 SMES 在可再生能源应用中的各种研究,包括 SMES 的控制策略和电力电子接口。总结了 2020 年至 2050 年 SMES 发展的重要技术路线图和既定目标。本文还讨论了 SMES 开发和应用面临的重要挑战,并指出了可再生能源应用 SMES 系统开发和改进的重要未来研究方向。这项工作将具有重要意义,并将为可再生能源和储能领域的研究人员、公用事业和政府机构提供重要见解。
高温超导 (HTS) 带可以通过非常细的导线传输非常大的电流,而且没有电阻。这意味着 HTS 带可以缠绕成不产生热量的轻质高场电磁铁。因此,HTS 电磁铁在太空领域非常有用,因为太空领域对尺寸和重量有极大的限制,而且很难通过辐射方式消散传统铜电磁铁产生的热量。因此,HTS 被认为是一种小型化技术,能够在小型卫星上产生高磁场,用于电力推进、辐射屏蔽、姿态控制和感应储能等应用。HTS 设备需要在低温下运行,通常在 77 K 或以下。使用电制冷机可以在太空中保持这些低温。制冷机的性质及其与 HTS 电磁铁的集成方式对 SWaP(尺寸、重量和功率)要求有重大影响。本文介绍了旨在集成到立方体卫星中的 HTS 电磁铁设计的建模和初步物理测试。这项工作采用数值建模和实验相结合的方法,研究了单个微型低温冷却器是否可以将 HTS 电磁铁冷却到临界温度以下。使用 Sunpower CryoTel MT 低温冷却器,重量仅为 2.1 千克,长度和直径分别仅为 243 毫米和 73 毫米,仅使用 40 W 的输入功率即可获得低于 75 K 的电磁铁温度,同时保持 40 °C 的热端温度。这表明 HTS 电磁铁可以使用微型单级低温冷却器在小型卫星上运行。
2 3D 腔体.......................................................................................................................................................................................................................................................20 2.1 概述和动机..................................................................................................................................................................................................................................................................20 2.2 3D 腔体中的损耗机制..................................................................................................................................................................................................................................21 2.2.1 损耗概述..................................................................................................................................................................................21 . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 48 2.3.3 辐射损耗和衰减损耗 . ...
在旋转框架中观察到的两级系统的共振横向驾驶在拉比频率下两个退化状态,这是量子力学中出现的等效性。尽管成功地控制了自然和人工量子系统,但由于不循环术语等非理想性,可能会出现某些局限性(例如,可实现的栅极速度)。我们引入了一个由两个电容耦合的透射量子台形成的超导复合量子轴(CQB),其具有一个小的避免的横穿(小于环境温度)在两个能级之间。我们使用仅基带脉冲,非绝热过渡和连贯的Landau-Zener干扰来控制这种低频CQB,以实现快速,高效率,单Qubit的操作,其Clifford Fidelities超过99.7%。我们还在两个低频CQB之间执行耦合的量子操作。这项工作表明,使用仅基带脉冲可行,对低频量子的通用非绝热是可行的。
摘要:模拟分子的响应特性对于解释实验光谱和加速材料设计至关重要。然而,对于传统计算机上的电子结构方法来说,这仍然是一个长期存在的计算挑战。虽然量子计算机有望在长期内更有效地解决这一问题,但现有的需要深度量子电路的量子算法对于近期的噪声量子处理器来说是不可行的。在此,我们引入了一种用于响应特性的实用变分量子响应 (VQR) 算法,从而无需深度量子电路。利用该算法,我们报告了在超导量子处理器上首次模拟分子的线性响应特性,包括动态极化率和吸收光谱。我们的结果表明,使用该算法结合合适的误差缓解技术,一大类重要的动态特性,如格林函数,在近期的量子硬件范围内。
具有微波跃迁频率的固态量子比特(例如超导量子比特)处于量子信息处理的前沿。然而,即使是中等规模的超导量子比特的高保真度、同时控制仍然是一项挑战,部分原因是封装这些设备的复杂性。在这里,我们提出了一种微波封装设计方法,重点关注材料选择、信号线工程和杂散模式抑制。我们描述了使用用于开发 24 端口微波封装的模拟和测量验证的设计指南。分析量子比特环境发现在 11 GHz 以下没有杂散模式。材料和几何设计选择使封装能够支持寿命超过 350 μ s 的量子比特。这里介绍的微波封装设计指南解决了许多与近期量子处理器相关的问题。
读出量子位,如图 1a 所示。图 1b-d 表示量子计算机从传统方法演变为可扩展架构。量子位是量子计算机中的基本计算块,由于其叠加和纠缠特性,可实现指数级更快的计算。量子位是一个两级系统,可以处于量子态 j ψ i ,可以表示为其两个计算基态 j 0 i 和 j 1 i 的叠加。这两个状态占据不同的层次,与经典数字逻辑零和一完全类似。量子位的状态有一个独特的注释,即布洛赫球面单位球表面上的一个点。如图 1e 所示,布洛赫球的北极和南极分别代表 j 0 i 和 j 1 i 状态,而布洛赫球表面的所有其他点则对应于不同的叠加态 j ψ i = α j 0 i + β j 1 i 。量子叠加态的振幅与平均占空比信号的经典模拟之间可以进行类比。两个电压电平 VDD 和 GND 在进行占空比和平均后,提供 VDD 和 GND 之间的所有电平,S avg = α VDD + β GND,如图 1f 所示。此外,在读出量子态时,输出要么处于 j 0 i 状态,要么处于 j 1 i 状态。同样,在读出经典模拟中的占空比平均信号时,输出要么为 VDD 要么为 GND。
(日期:2022年7月1日)在努力使量子计算机成为现实的努力中,综合的超导电路已成为一个有希望的建筑。这种方法的一个主要挑战是脱离固定的原子隧道缺陷的脱节性,在量子电极的界面处的虚拟隧道缺陷,这可能会从Qubit的振荡电场中共同吸收能量,并减少Qubit的能量宽松时间t 1。在这里,我们表明可以通过使用应用的DC-电场来调整偏离量子共振的主导缺陷来提高量子相干性。我们演示了一种优化应用的场偏置并将平均量子t 1次提高23%的方法。我们还讨论了如何在超导量子处理器中实现局部栅极电极,以同时对单个Qubits进行同时的原位相干性优化。
摘要 爱因斯坦经常用“光子盒”进行思想实验,无限次地存储场。但这还只是梦想。然而,我们可以在超导腔中存储数十亿个周期的量子微波场。使用圆形里德堡原子,可以非常详细地探测这些捕获场的量子态。腔量子电动力学工具可用于直接确定 Husimi Q 和 Wigner 准概率分布。它们提供了对场的经典或非经典性质的非常直接的洞察。