概述 两种嵌合抗原受体 (CAR) T 细胞疗法获批用于治疗 B 细胞恶性肿瘤,凸显了细胞免疫疗法在提供令人印象深刻的持久临床反应方面的潜力 1 。这些产品本质上是自体的,涉及从患者身上收集用于制造 CAR T 细胞的免疫细胞。一旦生产出来,这些 CAR T 细胞就会作为临床产品重新注入患者体内。然而,自体疗法面临着重大挑战,包括产品生产时间(目前需要数周),在此期间患者的病情可能会恶化,以及起始材料的质量高度不稳定,这可能导致制造失败。同种异体 CAR T 细胞疗法是一种现成的方法,可以在需要时进行管理,是理想的解决方案。这种方法从健康供体中生成细胞,形成一个 CAR T 细胞库,可根据需要使用。同种异体 CAR T 的关键挑战是克服与同种异体 CAR T 细胞识别健康患者组织相关的毒性。这是由 T 细胞受体 (TCR) 介导的。破坏 TCR 是所有当前同种异体 CAR-T 策略的基础 2 。发夹和剪刀目前,用于生成同种异体 CAR-T 的基因编辑技术处于临床开发的早期阶段。不同的基因编辑方法都是基于切割编码 TCR 的基因之一内的基因组,从而永久性地降低整个 TCR 复合物的表达。虽然是一种优雅的方法,但由于潜在的产品安全问题,这种剪刀策略一直难以进入临床测试阶段——主要是确保在基因编辑过程中没有“脱靶”基因组切割 3 。或者,在 mRNA 水平上靶向基因表达不涉及切割基因组,并避免危及基因组完整性。为了实现这种 mRNA“编辑”,Celyad Oncology 采用了短发夹 RNA (shRNA),这是一种几十年来用于敲低基因表达的方法 4 。该方法涉及使用具有与目标基因互补序列的 shRNA。换句话说,靶向 shRNA 可以通过干扰 mRNA 而不是切割基因组 5 来特异性降低所需蛋白质(如 TCR 复合物)的水平。其中的核心是一体化载体方法。只需一步,将单一试剂(载体)引入健康供体 T 细胞,即可同时产生 T 细胞中的所有元素,这些元素可以将 T 细胞重定向到肿瘤(CAR)、消除 TCR(shRNA)并提供一个手柄,使修饰的细胞可以在制造过程中富集(标记物)。同种异体 CAR T 细胞平台中的 shRNA CD3z 亚基为 TCR 提供主要信号功率,从而激活和参与 T 细胞杀伤能力。通过选择最佳 shRNA 和工艺开发,靶向 CD3z 可使原代 T 细胞上的 TCR 持续高水平敲低,达到与基因编辑 CD3z 基因时相同的水平(图 1A)。从功能上讲,这与这些细胞无法对有丝分裂刺激(又称 TCR 驱动的 T 细胞活化;图 1B)作出反应以及当这些细胞被注入黄金标准体内测试模型时相应没有毒性有关(图 2A、B)。有趣的是,shRNA 靶向 T 细胞的持久性比 CRISPR-Cas9 基因的持久性要长得多
source identifier dilution mouse anti human IFN- PE Biolegend 502509 1:100 mouse anti human TNF- Pe-Cy7 BD 557647 1:100 mouse anti human/mouse granzyme B BV421 Biolegend 396414 1:150 mouse anti human V 1 TCR PE eBioscience 12-5679-42 1:100 mouse anti human V 2 TCR PE Biolegend 331408 1:200 mouse anti human V 2 TCR APC Biolegend 331418 1:200 mouse anti human CD3 BV510 BD 563109 1:200 mouse anti human CD25 BV605 BD 562661 1:100 mouse anti human CD27 PE-Cy7 Invitrogen 25-0279-42 1:200 mouse anti human CD45RA PE BD 555489 1:200小鼠抗人CD69 BUV395 BD 564364 1:200小鼠抗人CD137 BUV661 BD 741642 1:200 231
本演示文稿包含Intellia Therapeutics,Inc。(“ Intellia”,“我们”或“我们的”)的“前瞻性陈述”,这是1995年《私人证券诉讼改革法》的含义。这些前瞻性陈述包括但不限于有关Intellia关于我们的信念和期望的明示或暗示陈述:计划提交研究新药(“ IND”)申请(“ IND”)申请或类似的NTLA-5001申请申请,我们对我们的第一个T细胞受体(“ TCR”)指导的细胞治疗疗法开发在我们的急诊Myeloid Leukemia中(我们的第一个TCR)的候选人(“ TCR”)的培养基疗法(“ TCR”)(“ TCR”)(介绍)。评估NTLA-5001对以前接受过一线疗法的持续或经常性AML患者的预期;计划为我们的计划进行进步和完成临床前研究;开发专有的LNP/AAV混合输送系统,以及我们的模块化平台,以提高我们复杂的基因组编辑功能,例如基因插入;进一步开发我们的专有细胞工程过程,用于多个顺序或同时编辑;在即将举行的科学会议上介绍其他数据,以及2021年的其他临床前数据;我们的CRISPR/CAS9技术的进步和扩展以开发人类治疗产品,以及我们维护和扩展相关知识产权组合的能力;能够在临床前研究中证明我们平台的模块化并复制或应用结果,包括我们的attr,AML和HAE计划中的任何研究,包括人类临床试验,包括人类的临床试验;能够使用CRISPR/CAS9技术开发所有类型的其他类型的其他体内或Ex Vivo细胞疗法,尤其是针对AML中的WT1;以及我们产品候选人的潜在商业机会,包括价值和市场。
单个 HLA-B35:01/NP 418 特异性 TCRαβ 的功能亲和力和抗原敏感性。动力学肽剂量功能反应通过 J76 细胞中的 CD69 MFI 表达来测量,这些细胞被 HLA-B*35:01 限制的 NP 418 特异性 TCR(门控 CD8 + 、CD3 + 和 GFP + )转导,并用不同浓度的 HLA-B*35:01 + C1R 呈递的 NP 418 肽刺激过夜。来源:Science Immunology (2025)。DOI:10.1126/sciimmunol.adn3805
DNA碱基损伤是致癌突变和基因表达中断的主要来源。RNA聚合酶II(RNAP)在DNA损伤部位的失速和随后的修复过程触发在塑造基因组 - 突变的广泛分布,清除转录障碍以及最小化错误编码的基因产物的过程中具有重要作用。尽管对遗传完整性的重要性很重要,但这种转录耦合修复(TCR)过程的关键机理特征是限制或未知的。在这里,我们利用了一个井中的体内哺乳动物模型系统,以探索TCR的机械性能和参数,以良好的空间分辨率以及损坏的DNA链的区分,以烷基化损伤。为了进行严格的解释,开发了DNA损伤和TCR的可推广数学模型。将实验数据拟合到模型,模拟表明RNA聚合酶经常绕过不触发修复的病变,表明小烷基化加合物不太可能是基因表达的有效障碍。损害爆发后,转录 - 耦合修复的效率逐渐通过基因体衰减,对癌症驱动器突变的发生和准确推断的影响。重新修复修复位点的转录不是转录的一般特征 - 耦合修复,并且观察到的数据与重新定期永远不会发生。共同揭示了TCR的方向性但随机活性如何塑造DNA损伤后突变的分布。
背景:尽管取得成功,但检查点封锁免疫疗法已被证明在选定的肺癌患者人群中具有挑战性。这部分是由于发挥作用时广泛的肿瘤内异质性以及识别非肿瘤抗原的旁观者T细胞的渗透。最近的临床试验证明了使用大量未富含肿瘤浸润的淋巴细胞的过养细胞疗法的功效,但成功仍然有限。因此,需要新型的肿瘤抗原来进一步改善肺癌中细胞免疫疗法的成功。叉子盒M1(FOXM1)是在90%的肺癌中表达的转录因子,缺乏在脑组织中的表达,使其成为T细胞受体(TCR)工程的吸引力。有趣的是,FOXM1的上调与对酪氨酸激酶抑制剂(TKIS)的耐药性有关,强调了该靶标的另一种潜在的治疗应用。在这里,我们评估了FOXM1的免疫原性及其作为非小细胞肺癌中细胞治疗靶标的潜力。方法:分离抗原特异性T细胞,然后通过HLA匹配的健康供体PBMC的肽刺激扩展。然后,通过四聚体分选并进行单细胞TCR测序,以鉴定TCR的全长α和β链,将抗原特异性T细胞分离出来。TCR逆转录病毒设计为健康的供体PBMC,并通过Chromium-51释放(细胞毒性),ELISPOT(IFN-分泌)和ELISA(MIP-1分泌)评估功能。结果:在HLA-A*02:01(占美国人口的42%)上时,FOXM1(YLVPIQFPV)的表位是免疫原性的。该表位被证实是自然处理的,并使用H1975细胞进行了呈现。对细胞毒性的评估表明,TCR工程PBMC裂解了51%的H1975细胞,而H1975的H1975父母细胞仅为10%(p <0.0001)。通过ELISPOT评估的细胞因子评估表明,ELISA的IFN-r-斑点(P <0.05)和MIP-1分泌(P <0.05)显着增加。结论:我们的发现证实了在美国最普遍的HLA等位基因上呈现FOXM1的免疫原性,并支持TCR工程靶向FOXM1治疗肺癌的可行性。
图 6. CD4 与 CD8 T 细胞比例的保持。通过流式细胞术鉴定 CD4 和 CD8 T 细胞。非电穿孔细胞(条件 0)在活细胞、单个细胞和未转染细胞(TCRαβ + )上进行门控,而电穿孔细胞在活细胞、单个细胞和敲除细胞(TCRαβ – )上进行门控。非电穿孔细胞与使用 Neon 系统(100 µL)和 CTS Xenon 系统(1 和 9 mL)电穿孔的细胞之间的 CD4(深蓝色)和 CD8(浅蓝色)T 细胞比例基本保持一致。
• Mediated by T lymphocytes • T lymphocytes are produced in the bone marrow and fetal liver • Later they migrate to the thymus (hence the name T lymphocytes) • Here their T cell receptors (TCR) become specific to antigens through DNA restructuring, and are so able to recognise “self” form “non-self” molecules • TCR only recognise fragments of antigens as opposed to B lymphocytes which recognise the whole antigen • TCR cannot recognise these fragments in isolation but need them to be bound to the molecule, major histocompatibility complex (MHC), to complete the process • In humans MHC is known as human leukocyte antigens (HLA) • Two classes of HLA exists, HLA 1 and HLA 2 • HLA 2 are present on macrophages, monocytes and B lymphocytes, the antigens are phagocytosed by antigen presenting cells (dendritic cells), next the antigens are hydrolysed into peptides and subsequently bind to HLA 2, it is then presented to helper T lymphocytes • Thus CD4 T cells recognise antigens in association with HLA 2 • The CD4 T cell will stay bound to the DC and divide and differentiate进入T辅助细胞(TH细胞)
CD8 T 细胞反应效率主要取决于 TCR 与肽-MHC 的结合强度,即 TCR 结合亲和力。肿瘤免疫学的当前挑战在于评估疫苗方案,选择亲和力最高的肿瘤特异性 T 细胞,提供针对肿瘤细胞的最大免疫保护和临床益处。在这里,我们研究了肽和 CpG/佐剂剂量对疫苗诱导的 CD8 T 细胞质量的影响,与治疗的黑色素瘤患者的结合亲和力和功能反应有关。我们使用 TCR-pMHC 结合亲和力测量结合表型和功能分析,对 7 名接种了不同剂量 Melan-A/ELA 肽(0.1 mg vs. 0.5 mg)和 CpG-B 佐剂(1-1.3 mg vs. 2.6 mg)的患者的代表性肿瘤抗原特异性 CD8 T 细胞克隆(n = 454)进行了全面研究。高剂量肽疫苗接种有利于 Melan-A 特异性 CD8 T 细胞的早期和强效体内扩增和分化。一致地,从这些患者产生的 T 细胞克隆在每月注射 4 次疫苗(4v)后迅速显示出增加的 TCR 结合亲和力(即缓慢的解离率和 CD8 结合独立性)。相比之下,使用低剂量肽或高剂量 CpG-B 需要每月注射 8 次疫苗 (8v) 以富集具有高 TCR 结合亲和力和低 CD8 结合依赖性的抗肿瘤 T 细胞。重要的是,CD8 结合独立的疫苗诱导的 CD8 T 细胞表现出增强的功能亲和力,达到最大功能的平台期。因此,在超过某个 TCR 结合亲和力极限后,肽/CpG/IFA 疫苗接种后的 T 细胞功能效力可能不会进一步提高。我们的结果还表明,虽然高剂量肽疫苗接种诱导了具有更高功能能力的 Melan-A 特异性 CD8 T 细胞的早期选择,但持续的连续疫苗接种也促进了这种高亲和力 T 细胞。总体而言,对 T 细胞结合亲和力的系统评估可能有助于优化疫苗设计以提高临床疗效。
T细胞受体(TCR)及其同源表位之间结合的准确预测是理解适应性免疫反应和发展免疫疗法的关键。当前方法面临两个显着的局限性:全面的高质量数据的短缺以及通过选择监督学习方法中常用的负面培训数据引起的偏见。我们提出了一种基于变压器的方法,用于相互作用的肽和T细胞受体(Tulip)的方法,该模型通过利用不完整的数据和无监督的学习以及使用语言模型的变压器体系结构来解决这两个限制。我们的模型具有灵活性,并整合了所有可能的数据源,无论其质量或完整性如何。我们证明了先前有监督方法中使用的抽样程序引入的偏差的存在,强调了不受监督的方法的需求。郁金香识别表位的特定TCR结合,在看不见的表位上表现良好。我们的模型优于最先进的模型,并为开发更准确的TCR表位识别模型提供了有希望的方向。