摘要已开发了不对称扩展源隧道场效应晶体管(AES-TFET)的二维分析模型,以获得更好的设备性能。已通过求解2-D Poisson的方程来分析并执行所提出的设备模型。表面电势分布,电场变化和带对频带隧道(BTBT)速率已通过此数值建模研究。TFET新颖结构的源区域已扩展(不同的2 nm至6 nm),以结合角效应,从而通过薄薄的隧道屏障进行了BTBT,并具有受控的双极传导。这最终为N通道AES-TFET产生了更好的源通道接口隧道。2-D数值设备模拟器(Silvaco TCAD)已用于模拟工作。最终通过AES-TFET的分析建模来验证模拟工作。更好的是,我关闭和切换比是从这个新颖的TFET结构中获得的。关键字AES-TFET·表面电势分布·电场变化·BTBT·TCAD·数值建模。1介绍纳米科学和纳米技术在纳米级设备中的出现,晶体管的物理大小已被绝对地缩小。通过遵循2022年摩尔的法律预测,微型化已达到其对金属氧化物施加效应晶体管(MOSFET)的极限[1]。在这方面,过去二十年中已经出现了各种扩展问题。短通道效应(SCE),排水诱导的屏障降低(DIBL)[2]。 ritam dutta ritamdutta1986@gmail.com短通道效应(SCE),排水诱导的屏障降低(DIBL)[2]。ritam dutta ritamdutta1986@gmail.com为了克服这些问题,在新型MOSFET结构中正在进行持续的研究。但是,在目前的情况下,在60mv/十年的MOSFET上有限的子阈值摇摆(SS)是研究人员的主要缺点。
摘要:为了检测生物分子,提出了基于介电调节的堆叠源沟槽闸门隧道效果晶体管(DM-SSTGTFET)的生物传感器。堆叠的源结构可以同时使状态电流较高,并且较低的状态电流较低。沟槽栅极结构将增加隧道区域和隧道概率。技术计算机辅助设计(TCAD)用于对拟议的结构化生物传感器的灵敏度研究。结果表明,DM-SSTGTFET生物传感器的当前灵敏度可以高达10 8,阈值电压灵敏度可以达到0.46 V,亚阈值秋千灵敏度可以达到0.8。由于其高灵敏度和低功耗,该提议的生物传感器具有很高的前景。
在本文中,我们揭示了一种新结构,其中金属氧化物半导体场效应晶体管 (MOSFET) 与隧道场效应晶体管 (TFET) 并联以增加导通电流。为了提高器件中的隧道电流注入率,利用了栅极和衬底电极中的功函数工程以及通道 (源极袋) 中的掺杂工程。为了进一步增强器件的导通电流,通过在结构中结合 MOSFET 使用热离子注入机制。此外,使用异质栅极电介质来减少寄生电容。我们的分析表明,与 DW HGD SP TFET 相比,PTM-FET 晶体管在跨导、I on /I off 电流比、短通道效应(如 DIBL)、早期电压、最大传感器功率增益、单边功率增益、增益带宽积、单位增益频率和寄生电容方面具有多项优势。PTM-FET 晶体管的上述优势可以成为在低功耗和高性能集成电路应用中使用该器件的窗口。2020 作者。由 Elsevier BV 代表艾因夏姆斯大学工程学院出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc- nd/4.0/ ) 开放获取的文章。
摘要在本文中,已经开发了不对称高架源隧道场效应晶体管(AES-TFET)的二维分析模型,以获得更好的隧道连接装置性能。基于设备物理学的分析建模是通过求解2-d poisson方程进行的。表面电势分布,电场变化和带对波段隧道(B2B)的速率已通过此数值建模研究。在我们提出的结构中,来源已升高(不同的2 nm至6 nm)以融合角效应。这可以通过薄隧道屏障进行载体运输,并具有控制的双极传导。这最终为N通道AES-TFET结构产生更好的源通道界面隧道。2-D数值设备模拟器(Silvaco TCAD)已用于模拟工作。模拟图形表示最终通过AES-TFET的分析建模验证。关键字AES-TFET·表面电势分布·电场变化·B2B隧道·TCAD·数值建模。1介绍纳米科学和纳米技术在纳米级设备中的出现,晶体管的物理大小已被绝对地缩小。通过遵循2022年摩尔的法律预测,微型化已达到其对金属氧化物施加效应晶体管(MOSFET)的极限[1]。在这方面,过去二十年中已经出现了各种扩展问题。短通道效应(SCE),排水诱导的屏障降低(DIBL)[2]。 为了克服这些问题,在新型MOSFET结构中正在进行持续的研究。短通道效应(SCE),排水诱导的屏障降低(DIBL)[2]。为了克服这些问题,在新型MOSFET结构中正在进行持续的研究。但是,在目前的情况下,在60mv/十年的MOSFET上有限的子阈值摇摆(SS)是研究人员的主要缺点。ritam dutta ritamdutta1986@gmail.com
摘要已开发了不对称扩展源隧道场效应晶体管(AES-TFET)的二维分析模型,以获得更好的设备性能。已通过求解2-D Poisson的方程来分析并执行所提出的设备模型。表面电势分布,电场变化和带对频带隧道(BTBT)速率已通过此数值建模研究。TFET新颖结构的源区域已扩展(不同的2 nm至6 nm),以结合角效应,从而通过薄薄的隧道屏障进行了BTBT,并具有受控的双极传导。这最终为N通道AES-TFET产生了更好的源通道接口隧道。2-D数值设备模拟器(Silvaco TCAD)已用于模拟工作。最终通过AES-TFET的分析建模来验证模拟工作。更好的是,我关闭和切换比是从这个新颖的TFET结构中获得的。
本研究中的 TFET 为浮体 SOI 器件,因此应首先评估执行电荷泵浦测量的可行性 [19]。当用具有恒定基极电平和幅度的方波脉冲栅极时,漏极和源极保持在相同的电位,该电位扫过 0 至 1.5 V 的适当范围,以激活 Si/栅极电介质界面处的生成-复合过程。发现在 P+ 源极接触处测得的电流与栅极脉冲的频率成正比,证明了电荷泵浦装置的正确性 [20],[21]。因此,即使我们的基于 SOI 的 TFET 中没有体接触,由于源极和漏极具有相反的掺杂类型,我们仍然可以执行电荷泵浦测量来评估 N it 。对于下面所示的电荷泵结果,栅极由 500 kHz 方波驱动,其边沿时间为 100 ns,幅度为 1.5 V,基准电平为 0 V,脉冲占空比为 50%。
学士:首尔国立大学电子工程学士 (1996 - 2000) 硕士:首尔国立大学电子工程学士 (2000 - 2002) 博士:首尔国立大学电子工程学士 (2002 - 2006) 工作经历
隧道场效应晶体管 (TFET) 被认为是未来低功耗高速逻辑应用中最有前途的器件之一,它将取代传统的金属氧化物半导体场效应晶体管 (MOSFET)。这是因为随着 MOSFET 尺寸逐年减小,以实现更快的速度和更低的功耗,并且目前正朝着纳米领域迈进,这导致 MOSFET 的性能受到限制。在缩小 MOSFET 尺寸的同时,面临着漏电流增加、短沟道效应 (SCE) 和器件制造复杂性等几个瓶颈。因此,基于隧道现象原理工作的 TFET 已被提议作为替代 MOSFET 的器件之一,后者基于热电子发射原理工作,将器件的亚阈值摆幅限制在 60mV/十倍。 TFET 具有多种特性,例如不受大多数短沟道效应影响、更低的漏电流、低于 60mV/dec 的更低亚阈值摆幅、更低的阈值电压和更高的关断电流与导通电流之比。然而,TFET 也存在一些缺点,例如掺杂 TFET 的制造工艺复杂,会导致各种缺陷。这些问题可以通过使用无掺杂技术来克服。该技术有助于生产缺陷更少、更经济的设备。另一个缺点是 TFET 表现出较低的导通电流。异质材料 TFET 可用于解决低离子问题。为了更好地控制异质材料 TFET 沟道,提出了双栅极。亚阈值摆幅 (SS) 是决定器件性能的重要参数之一。通过降低 SS,器件性能将在更低的漏电流、更好的离子/关断比和更低的能量方面更好。这个项目有 3 个目标:建模和模拟异质材料双栅极无掺杂 TFET (HTDGDL- TFET)。比较 Ge、Si 和 GaAs 作为源区材料的 TFET 性能。将 HTDGDL-TFET 用作数字反相器。将使用 Silvaco TCAD 工具进行模拟。已成功建模单栅极和双栅极 HTDL-TFET。已为该项目进行了 4 个模拟测试用例,以选择所提 TFET 的最佳结构。使用 Vth、SS、Ion、Ioff 和 Ion/Ioff 比等几个重要参数来测量 TFET 的性能。在所有 4 个测试用例中,最佳 TFET 结构以 Ge 为源区材料,源区和漏区载流子浓度为 1 × 10 19 𝑐𝑚 −3,沟道载流子浓度为 1 × 10 17 𝑐𝑚 −3,且无掺杂。这是因为器件的 Vth 值为 0.97V,SS 值为 15mV/dec,Ion/Ioff 比为 7 × 10 11 。设计的 TFET 反相器的传播延迟比 [21] 中的反相器短 75 倍,比市场反相器 [SN74AUC1G14DBVR] 短 29 倍。本文还提出了一些未来的工作。
摘要 — 本文详细研究了机械应变对过渡金属二硫属化物 (TMD) 材料隧道场效应晶体管 (TFET) 的影响。首先,利用密度泛函理论 (DFT) 的第一原理在元广义梯度近似 (MGGA) 下计算机械应变对 MoSe 2 材料参数的影响。通过在非平衡格林函数 (NEGF) 框架中求解自洽 3D 泊松和薛定谔方程,研究了 TMD TFET 的器件性能。结果表明,I ON 和 I OFF 均随单轴拉伸应变而增加,但 I ON / I OFF 比的变化仍然很小。TMD TFET 中这种应变相关性能变化已被用于设计超灵敏应变传感器。该器件对 2% 的应变显示出 3.61 的灵敏度 (ΔI DS / I DS)。由于对应变的高灵敏度,这些结果显示了使用 MoSe 2 TFET 作为柔性应变传感器的潜力。此外,还分析了应变 TFET 的后端电路性能。结果表明,与无应变 TFET 相比,基于受控应变的 10 级反相器链的速度和能效有显著提高。
在本文中,我们研究了在漏极侧加入 HfO 2 作为电介质并在源极侧加入硅堆栈对双栅极隧道 FET(DG-TFET)电气性能的影响。为此,我们将传统 TFET 结构与其他四种结构进行了比较,这四种结构的栅极电介质材料要么是同质的,要么是异质的,而漏极侧的绝缘体要么是 SiO 2 要么是 HfO 2 。此外,还提出了一种具有硅源堆栈的结构,并将器件的性能系数与其他对应结构进行了比较。我们的模拟结果表明,漏极侧存在 HfO 2 绝缘体会降低双极传导,而异质栅极电介质则会增强驱动电流和跨导。但是,与传统 TFET 相比,HfO 2 会略微降低源极-栅极和漏极-栅极电容。此外,在所研究的 50 nm 沟道长度 TFET 中,硅源极堆栈与异质栅极电介质和漏极侧的 HfO 2 绝缘体的结合,可实现更高的 I ON /I OFF 比、更低的亚阈值斜率 (S) 和更低的双极传导。