量子计量领域有可能大幅提高从标准量子极限到海森堡极限的测量精度。这些技术依赖于创建纠缠量子态的能力,并通过干涉法利用它们进行高精度测量。可以采用各种不同的技术来利用各种纠缠态的计量应用 [ 1 – 5 ] 。创建这些在计量上有用的状态通常是一项艰巨的任务。一种有前途的方法是绝热态制备,其中系统从一个简单的哈密顿量开始,该哈密顿量具有易于生成的产物态作为其基态,然后通过缓慢改变外部参数绝热演化到复杂哈密顿量的纠缠基态。挑战在于,与相关的最小能隙相比,绝热态制备必须缓慢进行,以减少演化过程中不必要的绝热激发。对于热力学极限中间隙消失的系统,有限系统的最小间隙通常与系统大小成反比,这使得绝热态准备对于较大的系统尤其困难。当前的量子模拟器无法使系统演化足够长的时间来完全执行此过程,因为它们受到退相干和技术噪声的限制。这种演化时间短的限制不可避免地会产生非绝热激发,这种激发可能非常显著,并会严重影响目标纠缠态的保真度。挑战在于在长时间尺度上进入的退相干误差和在短时间尺度上进入的非绝热激发之间找到平衡。该问题的一个潜在解决方案是绝热的捷径——系统以非绝热方式演化,以便在演化结束时进入纠缠基态。这些技术减少了总状态准备时间,这使得它们在处理退相干效应时具有吸引力。最近,该领域出现了许多理论突破 [ 6 – 8 ] 。一种基于向汉密尔顿量添加反非绝热场的技术可以保证系统演化到正确的纠缠基态。它通过在汉密尔顿量中添加一个辅助项来实现这一点,该辅助项旨在精确抵消将要发生的激发,确保系统始终保持在瞬时基态。该项的强度
暗示性的雕刻的缘石将客户引导到庞贝的妓院,总是在家庭语音助手那里收集您的对话,以服务于您的目标广告。但是,要提高销售量,他们首先需要引起我们的注意。,正是这种引起关注的竞争意味着我们可以消费的更大,通常是免费的内容。通过广告收入使有效的新闻,广播和电视都成为可能。广播权利和品牌促进了从业余体育到职业时代的逐步升级 - 让您最喜欢的运动员可以跳过日常工作,宁愿每天在健身房度过12个小时,让您在场上呆80分钟。广告也是我们数字乌托邦的无声顾客。他们为我们无法没有的“免费”平台付费 - Google Maps,Instagram,Facebook,
1 美国罗彻斯特梅奥诊所生物化学与分子生物学系;2 美国贝塞斯达国立卫生研究院国家人类基因组研究所转化与功能基因组学分支机构;3 美国俄克拉荷马城俄克拉荷马医学研究基金会功能与化学基因组学项目;4 美国艾奥瓦州立大学遗传学、发育与细胞生物学系;5 加拿大多伦多 Unity Health 与多伦多大学圣迈克尔医院李嘉诚知识研究所斑马鱼高级药物发现中心和基南生物医学科学研究中心;6 美国罗彻斯特梅奥诊所心血管医学系;7 美国巴尔的摩卡内基科学研究所胚胎学系;8 美国罗彻斯特梅奥诊所临床基因组学系;9 美国罗彻斯特梅奥诊所耳鼻喉科系; 10 印度德里科学与工业研究理事会基因组学与综合生物学研究所基因组学与分子医学部;11 美国费城天普大学生物系;12 德国科隆大学动物学研究所发育生物学部
量子计算中最重要的、最困难的实验工作之一是实现近乎完美的两量子比特门操作。目前,人们认为大约 10 −4 的门错误概率足够低,可以实现所谓的高效容错量子计算 1、2。囚禁离子串是实现量子计算机最有希望的候选对象之一。用离子量子门实验实现的最低门不真实性仍然在 3% 左右 3。这种几何相位门的主要限制来自自发辐射和磁场涨落 3、4。离子阱量子计算可以用两种替代的量子比特编码来实现:超精细基态量子比特和通过光跃迁连接的量子比特态。对于超精细量子比特,门操作由偶极跃迁介导的拉曼耦合执行。参考文献 3 使用了基于这种超精细跃迁的编码。然而,在这样的设置下,将自发散射降低到所需的容错水平以下是很有挑战性的 5,6 ,因为需要大量的激光功率。最近,针对超精细量子比特 7 ,提出了在四极跃迁中使用拉曼过程。然而,这种策略需要高激光功率来实现短门时间。在这里,我们提出了在光学跃迁上使用 z 型几何相位门来克服 3 实现中存在的一些限制。例如,使用光学四极跃迁可以充分降低自发辐射事件的可能性。同时还表明,磁场不敏感状态可用于 z
为了激励次级债权人支持重组计划,高级债权人可以同意将其计划分配的一部分“赠予”该次级债权人,前提是次级债权人投票接受该计划。在破产术语中,这通常被称为“死亡陷阱”计划条款,因为如果整个群体(66 2/3% 的债权人投票,且多数群体成员投票)不投票接受该计划,则该群体中的任何成员都不会获得“赠予”的分配。 “死亡陷阱”计划处理可以成为一种有效的工具,可以最大限度地减少与计划相关的诉讼(包括“强制”斗争),理想情况下,可以获得所有受损群体支持的完全一致的计划。 1 实际上,“死亡陷阱”体现了“胡萝卜加大棒”的概念;要么接受提供给您的礼物,要么面对诉讼结果的后果,而结果可能让您少得多。
摘要 目的——当前,中国经济正处于转变经济发展方式、新旧增长动力转换的关键期,能否成功跨越“中等收入陷阱”成为人们广泛关注的重大课题。设计/方法/方法——在人工智能、区块链、云计算、大数据等底层数字技术的驱动下,以数字经济蓬勃发展为特征的第四次工业革命为中国经济“弯道超车”和跨越“中等收入陷阱”提供了重大机遇。数字经济与实体经济深度融合带来的经济发展方式转变、产业结构优化、增长动力转换是跨越“中等收入陷阱”的关键。研究结果——从供给侧来看,数字经济可以从以下三个方面提升供给侧质量和效率,促进供给侧结构性改革和经济增长:一是促进供给体系质量、效率和多元化;二是推动创新体系网络化、开放化、协同化;三是推动生产方式社会化、模块化、柔性化。从需求侧看,数字经济可以通过转变市场投资方向、促进消费升级、培育出口优势等方式,推动消费、出口、投资“三驾马车”经济增长新动能。然而,当这两种属性相互作用时,特别是当数据与市场经济中最具黏性的资本相结合时,就会基于技术属性产生一系列新的社会关系,导致社会关系发生重大调整,既有正外部性,也有负外部性。原创性/价值性——要突破“中等收入陷阱”,必须顺应经济演进规律,推动经济增长动力根本性转变;强化数据对数字经济的支撑作用,推动数字经济高质量发展;加快数字产业化、产业数字化,实现数字经济与实体经济深度融合。关键词 数字经济 经济结构转型 中等收入陷阱 论文类型 研究论文
摘要 - 本文介绍了一种解决现实世界动物识别问题的算法,即确定panthera提供的非标记的非洲豹图像数据集中的K单个动物数量未知数量。为了确定豹子的ID,我们提出了一种有效的自动化算法,该算法包括从图像中分割豹子体,对图像对之间的相似性和群集进行了分割,然后进行验证。要执行聚类,我们采用了修改的三元搜索,该搜索使用了新型的自适应K -Medoids ++聚类算法。最佳聚类是使用Silhouette分数的扩展定义确定的。使用新的聚类后验证程序用于进一步提高聚类的质量。使用Panthera数据集评估了该算法,该数据集由1555张图像中拍摄的677个单独的豹子组成,并通过基线K -Medoids ++聚类算法算法的0.864进行了调整后的共同信息评分,与0.864相比进行了聚类。
原子上薄的半导体异质结构提供了一个二维(2D)设备平台,用于产生高密度的冷,可控制的激子。中间层激元(IES),绑定的电子和孔定位于分开的2D量子井层,具有永久的平面外偶极矩和长寿命,从而可以根据需要调整其空间分布。在这里,我们采用静电门来捕获并控制它们的密度。通过电气调节IE鲜明的偏移,可以实现2×10 12 cm-2以上的电子孔对浓度。在此高IE密度下,我们观察到指示了指示IE离子化过渡的线宽扩大,而与陷阱深度无关。该失控的阈值在低温下保持恒定,但增加了20 K,与退化IE气体的量子解离一致。我们在可调静电陷阱中对IE离子化的演示代表了朝着实现固态光电设备中偶极激子冷凝物实现的重要步骤。
摘要:基于β和σ融合分析,我们发现了欧洲委员会报告的国际创新指数的创新差距很高的持久性。我们的研究证实了分析经济体之间的分歧科学潜力。估计提供了融合的证据。我们提出了一个简单的固定效应面板回归,以测量相对创新的潜力。我们的模型表明,目前的排名领导人,即北欧国家(瑞典,丹麦和芬兰)和德国,可能会进一步超过美国。中欧和东欧国家正在取得最大的相对增长,但不太可能超过美国潜力的70%。外围欧洲国家,南非,土耳其和俄罗斯预计,尽管初步地位较弱,但仍将进一步失去其创新地位。
Micro-fabricated Surface Electrode Ion Trap with 3D-TSV Integration for Scalable Quantum Computing Jing Tao 1 , Luca Guidoni 2 , Hong Yu Li 3 , Lin Bu 3 , Nam Piau Chew 1 and Chuan Seng Tan 1* 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 2 Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, France, 75205 3 Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 117685 Email: tancs@ntu.edu.sg Abstract In this paper, 3D architecture for TSV integrated Si surface ion-trap is proposed, in which the TSV and microbump technology is used to connect the surface electrodes of ion trap到底部的Si插座。伪电位模拟用于确定“平面陷阱”和“ TSV陷阱”几何形状的捕获离子高度。在两种情况下均未观察到伪能力的显着偏差。初步的微型离子陷阱芯片是特征的。所提出的技术在形式和寄生降低微型表面离子陷阱方面有希望,用于可扩展的量子计算应用。(关键字:表面离子陷阱,3D TSV集成,量子计算)简介量子计算被广泛吹捧为维持对高性能计算未来需求的最有可能的技术之一。实现量子计算机的一种有希望的方法是将悬浮在真空中的原子离子用作量子位(Qubits)来执行量子操作[1]。离子被一组产生静态(DC)和射频(RF)电场的表面电极限制在自由空间中。具有适当波长的激光束用于将离子冷却到地面振动能状态,并通过解决离子的电子能态执行量子操作。现代离子陷阱芯片促进了在SI基板上制造的大量多段表面电极,以操纵高密度离子阵列或形成多个离子捕获区[2]。离子捕获技术的关键挑战之一是以可扩展的方式将不断增加的电极号互连到外部DC/RF电源。传统的电线键合方法需要在芯片表面积上设计耗尽空间的外围粘结垫设计,并且还具有从芯片外围到被困离子的激光障碍物的缺点。使用高级3D集成技术,提议将离子陷阱芯片垂直堆叠在Si插台上,在该插座机上,将通过(TSV)和微型凹凸在其中形成垂直互连以连接表面电极。图1显示了所提出的TSV积分离子陷阱模具的示意图,该陷阱堆叠在Si插孔器上,其中一个离子被困在陷阱芯片表面上方。提出的架构提供了一个微型离子陷阱系统,其优势具有高密度电极积分能力,较小的RC延迟,紧凑的外形尺寸和芯片表面激光束的清晰可访问性。