67 为了充分描述实验程序或概念,本文件中可能会标识某些商业实体、设备或材料。69 此类标识并不意味着国家标准与技术研究所的推荐或认可,也不意味着实体、材料或设备一定是可用于此目的的最佳实体、材料或设备。72 73 74 75 76 77 78 79 80 81 82 国家标准与技术研究所 NISTIR 8332-draft 83 Natl.Inst.Stand.Technol.NISTIR 8332-draft 84 29 页(2021 年 3 月) 85 86 本草案出版物可从以下网址免费获取: 87 https://doi.org/10.6028/NIST.IR.8332-draft 88 89 90 91 92 93 94 请将对本文档的评论发送至:AIUserTrustComments@nist.gov 95
MikkoMäkelä:氯匹氨派先前出现的不良反应后,坦佩雷大学医学执照教育的先进医学研究论文2024年6月是第二代抗精神病患者,也是唯一获得批准的治疗耐药性精神分裂症的药物。clotsapine具有丰富的副作用,其中一些甚至可能威胁到患者的生命。由于这些缺点,通常有必要停止向患者提供氯氮平,即使这对减轻精神病的症状很有用。本系统文献综述研究了氯氮平在先前的躯体不良反应之后的成功。文学搜索是使用“氯氮平”和“(“撤退”或“ Rechallenge””)从PubMed数据库进行的。搜索,收到了197个参考文献,其中98个在审查中获得了批准。缩写和研究的全文在坦佩雷大学图书馆,其他英语以外的研究以及不涉及clotsapine开始的研究。
• Land Use (Zoning and UGA Sizing) • Economic Development (Employment) • Environment (Critical Areas and Shorelines) • Transportation (Roads and Transit) • Parks, Recreation and Open Space • Capital Facilities (Utilities, Buildings, Services) • Housing and Human Services • Sub-Area/Neighborhood Plans • Climate Change (New Element )
在整个演示过程中,可能会识别某些商业公司或产品以促进理解。这种认定并不意味着美国国家标准与技术研究所的推荐或认可,也不意味着所认定的公司或产品一定是最适合此目的的。
摘要:热膨胀是长度计量中导致不确定性的主要原因。NIST 设计了一种基于容器的折射仪,其目标是在测量氦折射率时将不确定度控制在 10 − 6;就环境条件下的折射率而言,精度目标是折射率为 3 × 10 − 11。为了达到这种精度水平,0 的长度。5 m 气室需要在 100 nm 以内。当在 20 ◦ C 下用坐标测量机测量容器长度时,这是可以实现的。但是,折射仪将在水和镓的热力学已知固定点附近运行,分别在 0 ◦ C 和 30 ◦ C 附近。容器由熔融石英玻璃制成,其标称热膨胀系数为 0。4 ( µ m/m)/K。因此,要将尺寸计量的精度扩展到20 ◦ C到水的三相点,需要知道熔融石英玻璃的热膨胀系数在10 (nm/m)/K或2 .5 %的范围内。描述了一种测量熔融石英玻璃热膨胀系数的方法。测量原理是监测法布里-珀罗腔谐振频率随温度变化的变化;法布里-珀罗腔由熔融石英玻璃制成。测量中的标准不确定度小于0 .6 (nm/m)/K,或0 .15 %。性能的限制可以说是反射相移温度依赖性的不确定性,因为薄膜涂层的热光系数和热膨胀系数都无法可靠地知道。但是,其他几个不确定性因素的数量级也相同,因此任何性能改进都需要付出巨大努力。此外,对三个不同样品的测量表明,材料的不均匀性导致熔融石英的有效热膨胀系数存在差异;样品间热膨胀的不均匀性比单个样品的测量不确定度高 17 倍。
1 浙江大学物理系量子信息交叉学科中心、现代光学仪器国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310027 2 清华大学交叉信息研究院量子信息中心,北京 100084 3 阿里巴巴-浙江大学前沿技术联合研究院,杭州 310027 4 浙江大学杭州全球科技创新中心,杭州 311215 5 马里兰大学和 NIST 联合量子研究所及量子信息与计算机科学联合中心,美国马里兰州学院公园市 6 爱荷华州立大学物理与天文系,美国爱荷华州艾姆斯 50011 7 艾姆斯实验室,美国爱荷华州艾姆斯 50011 8 QuEra Computing Inc.,美国马萨诸塞州波士顿 02135 9 科罗拉多矿业学院物理系,美国科罗拉多州戈尔登 80401 10 美国国家标准与技术研究所,科罗拉多州博尔德 80305 11 上海启智研究所,中国上海市徐汇区云锦路 701 号人工智能大厦 41 层 200232
本研究改进了计量数据集的表面配准方法,以提高增材制造 (AM) 晶格的多方法鉴定精度。使用基于理论补充表面定义的派生几何基准特征对齐从 X 射线计算机断层扫描和 AM 晶格的坐标测量机获取的数据集,该理论补充表面定义已在最近的草案标准中建立,但在使用复杂 AM 结构时进行了有限的检查。基于空间相关子采样的晶格几何的改进采样配准方法被推导并显示可统计地减少测量源之间的差异。强调了明确定义的采样实践和定义的重要性。讨论了这种方法对复杂 AM 部件的多方法鉴定的适用性。本研究为利用新标准中正在考虑的规范奠定了基础,并可能采用验证技术。
我们考虑通过量子传感器网络中的量子比特传感器估计一组局部参数的多个解析函数的问题。为了解决这个问题,我们重点介绍了 Rubio 等人的传感器对称性能界限的概括,[ J. Phys. A 53 , 344001 (2020)],并开发了一种用于测量此类函数的优化顺序协议。我们将两种方法的性能相互比较,并与不利用量子纠缠的局部协议进行比较,强调测量函数的系数向量在确定最佳测量协议选择方面的几何意义。我们表明,在许多情况下,尤其是对于大量传感器,优化的顺序协议比其他策略产生更准确的测量结果。此外,与传感器对称方法相比,顺序协议总是可以明确实现的。顺序协议非常通用,具有广泛的计量应用。
摘要 空军研究实验室增材制造建模挑战系列的挑战 4 要求参赛者根据 IN625 试件的实验数据和广泛表征,预测几种特定挑战晶粒在拉伸载荷期间的晶粒平均弹性应变张量。在本文中,我们介绍了解决此问题的策略和计算方法。在比赛阶段,直接使用来自实验的特征化微观结构图像,通过基于遗传算法的材料模型识别方法预测某些挑战晶粒的机械响应。随后,在比赛后阶段,引入了一种基于适当广义分解 (PGD) 的降阶方法来改进材料模型校准。这种数据驱动的降阶方法非常有效,可用于识别力学和材料科学领域中的复杂材料模型参数。已经报告了原始预测和重新校准的材料模型的绝对误差结果。预测表明,整体方法能够处理局部响应识别的大规模计算问题。重新校准的结果和加速表明使用 PGD 进行材料模型校准的前景看好。
通用智能涉及将许多信息源整合成一个连贯、自适应的世界模型。要设计和构建通用智能硬件,我们必须考虑神经科学和超大规模集成的原理。对于能够实现通用智能的大型神经系统,用于通信的光子学和用于计算的电子学的属性是互补和相互依赖的。使用光进行通信可以实现跨大型系统的高扇出率和低延迟信号传输,而不会出现依赖流量的瓶颈。对于计算,约瑟夫森电路固有的非线性、高速度和低功耗有利于复杂的神经功能。在 4 K 下操作可以使用单光子探测器和硅光源,这两个特性可以实现效率和经济的可扩展性。在这里,我概述了光电硬件的概念,从突触电路开始,继续进行晶圆级集成,并扩展到与光纤束互连的系统,可能达到人脑的规模甚至更大。