Johannes WM Osterrieth, James Rampersad, David Madden, Nakul Rampal, Luka Skoric, Bethany Connolly, Mark D. Allendorf, Vitalie Stavila, Jonathan L. Snider, Rob Ameloot, João Marreiros, Conchi Ania, Diana Azevedo, Enrique Vilarrasa-Garcia, Xinca F, Buan, Buan, Hanze, Hanze, Neil. R. Champness, Sarah L. Griffin, Banglin Chen, Rui-Biao Lin, Benoit Coasne, Seth Cohen, Jessica C. Moreton, Yamil J. Colón, Linjiang Chen, Rob Clowes, François-Xavier Coudert, Yong Cui, Bang Hou, Deanna M. D'Alessandro, Payne Dohen, Doen, Doe, Sun, Christian. Michael Thomas Huxley, Jack D. Evans, Paolo Falcaro, Raffaele Ricco, Omar Farha, Karam B. Idrees, Timur Islamoglu, Pingyun Feng, Huajun Yang, Ross S. Forgan, Dominic Bara, Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sukho Khamed, Khammed Murji, Murji Murji, Matthew R. Saum. diq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu Kitagawa, Ken-ichi Otake, Ryan P. Lively, Stephen JA DeWitt, Phillip Llewellyn, Bettina V. Lotsch, Sebastian T. Ender, Alexander M. Pati M. Pati M. al, Javier García-Martínez, Noemi Linares, Daniel Maspoch, Jose A. Suárez del Pino, Peyman Moghadam, Rama Oktavian, Russel E. Morris, Paul S. Wheatley, Jorge Navarro, Camille Petit, David Danaci, Matthew J. Rosseinsky, Alexandros P., Kat Schunder, Martin Xu, Sergeant, Sergian, Sergeant. s Mouchaham, David S. Sholl, Raghuram Thyagarajan, Daniel Siderius, Randall Q. Snurr, Rebecca B. Goncalves, Shane Telfer, Seok J. Lee, Valeska P. Ting, Jemma L. Rowlandson, Takashi Uemura, Tomoya Iiyuka, Monique A. van der Revere, David Revere, Speed, M.J. and Lamaire, Krista S. Walton, Lukas W. Bingel, Stefan Wuttke, Jacopo Andreo, Omar Yaghi, Bing Zhang, Cafer T. Yavuz, Thien S. Nguyen, Felix Zamora, Carmen Montoro, Hongcai Zhou, Angelo Kirchon, and David Fairen-Jimenez*
Johannes W. M. Osterrieth,James Ramper,David Madden,Nakul Rampal,Luke Skoric,Bethany Connolly,Mark。 Santos,Xian-He Sun,Hana Bunzen,Sateh C. Moreton,Jessica C. Moreton。 M. D'Alessandro,Patrick W. Dohenn,MirceaDincă,Chenyue Sun,Christian Doonan,Michael Thomas Huxley,Jack D. Evans,Paolo Falcaro。 Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sujit K. Ghosh, Soumya Mukherjee, Matthew R. Hill, Muhammed Munir Sadiq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu北川。Johannes W. M. Osterrieth,James Ramper,David Madden,Nakul Rampal,Luke Skoric,Bethany Connolly,Mark。 Santos,Xian-He Sun,Hana Bunzen,Sateh C. Moreton,Jessica C. Moreton。 M. D'Alessandro,Patrick W. Dohenn,MirceaDincă,Chenyue Sun,Christian Doonan,Michael Thomas Huxley,Jack D. Evans,Paolo Falcaro。 Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sujit K. Ghosh, Soumya Mukherjee, Matthew R. Hill, Muhammed Munir Sadiq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu北川。A. Dewitt,免费V. Lotsch。拉玛·奥克塔维安(Rama Octavian),俄罗斯莫里斯(Morris),保罗·圣惠特利(Paul St. Wheatley),纳瓦尔(Navarre Cyderius,Randall Q. Snurr,Rebecca B. Concalves,Shane Telfer,Seok J. Lee,Valska P. Ting,Van Speybroeck,Sven M. Rogge,Krista,Christ。 St. Luke W. Bingel,Stefan Wuttke,Andreo Jacopo,Omar Yaghi。
Johannes WM Osterrieth, James Rampersad, David Madden, Nakul Rampal, Luka Skoric, Bethany Connolly, Mark D. Allendorf, Vitalie Stavila, Jonathan L. Snider, Rob Ameloot, João Marreiros, Conchi Ania, Diana Azevedo, Enrique Vilarrasa-Garcia, Xinca F, Buan, Buan, Hanze, Hanze, Neil. R. Champness, Sarah L. Griffin, Banglin Chen, Rui-Biao Lin, Benoit Coasne, Seth Cohen, Jessica C. Moreton, Yamil J. Colón, Linjiang Chen, Rob Clowes, François-Xavier Coudert, Yong Cui, Bang Hou, Deanna M. D'Alessandro, Payne Dohen, Doen, Doe, Sun, Christian. Michael Thomas Huxley, Jack D. Evans, Paolo Falcaro, Raffaele Ricco, Omar Farha, Karam B. Idrees, Timur Islamoglu, Pingyun Feng, Huajun Yang, Ross S. Forgan, Dominic Bara, Shuhei Furukawa, Eli Sanchez, Jorge Gascon, Selvedin Telalović, Sukho Khamed, Khammed Murji, Murji Murji, Matthew R. Saum. diq, Patricia Horcajada, Pablo Salcedo-Abraira, Katsumi Kaneko, Radovan Kukobat, Jeff Kenvin, Seda Keskin, Susumu Kitagawa, Ken-ichi Otake, Ryan P. Lively, Stephen JA DeWitt, Phillip Llewellyn, Bettina V. Lotsch, Sebastian T. Ender, Alexander M. Pati M. Pati M. al, Javier García-Martínez, Noemi Linares, Daniel Maspoch, Jose A. Suárez del Pino, Peyman Moghadam, Rama Oktavian, Russel E. Morris, Paul S. Wheatley, Jorge Navarro, Camille Petit, David Danaci, Matthew J. Rosseinsky, Alexandros P., Kat Schunder, Martin Xu, Sergeant, Sergian, Sergeant. s Mouchaham, David S. Sholl, Raghuram Thyagarajan, Daniel Siderius, Randall Q. Snurr, Rebecca B. Goncalves, Shane Telfer, Seok J. Lee, Valeska P. Ting, Jemma L. Rowlandson, Takashi Uemura, Tomoya Iiyuka, Monique A. van der Revere, David Revere, Speed, M.J. and Lamaire, Krista S. Walton, Lukas W. Bingel, Stefan Wuttke, Jacopo Andreo, Omar Yaghi, Bing Zhang, Cafer T. Yavuz, Thien S. Nguyen, Felix Zamora, Carmen Montoro, Hongcai Zhou, Angelo Kirchon, and David Fairen-Jimenez*
贡献者(按字母顺序)清单Lisbeth Bakker,Centrum voor Energiebespaaring,Delft:生长的原因,无增长的RALF BEHRENSMEIER博士的影响,Wuppertal Institute,Div。材料流和结构变化:每个分支统计的环境空间消耗StefanieBöge,Wuppertal Institute,Div。运输:运输强度分析Stefan Bringzu博士,Wuppertal Institute,Div。用于材料流和结构变化区域物质流量分析Manfred Fischedick,Wuppertal Institute,Div。能量:能源场景和环境空间Tamara Hammer,Wuppertal Institute,Div。用于物质流和结构变化:水,劳动,消费埃卡德·希尔德布兰特博士,柏林Wissenschaftszentrum柏林:可持续社会的劳动的未来弗里德里希·辛特伯格(Friedrich Hinterberger)用于物质流量和结构变化:,生长和环境空间使用的脱节,限制生长哈里·莱曼,沃伯塔尔研究所,系统分析小组:欧洲的土地利用模式,克里斯塔·利德克(Christa Liedtke)博士,沃珀塔尔研究所,div。材料流和结构变化:MIPS方法论Fred Luks,Wuppertal Institute,Div。材料流和结构变化:生长和环境空间的开发链接,限制了生长尤里根·马利博士,杜波尔塔尔研究所,Div。材料流和结构变化:可持续性的物理指标托马斯·默滕(Thomas Merten),沃珀塔尔研究所(Wuppertal Institute)用于材料流和结构变化:,MIPS方法论MartinSchüssler,Wuppertal Institute,Div。材料流和结构变化:MIPS方法论Roland Pareyke,Wuppertal Institute,系统分析小组:土地使用和林业统计数据,Div。运输,主任:运输的环境相关性,概述Torsten Reetz,Wuppertal Institute,系统分析小组:欧洲的土地使用模式Phillip Schepelmann,Tu Berlin / foe dermany Dermany土地使用,林业和土壤退化,弗里德里希·Schmidt-Schmidt-Bleek博士,弗里德里希·施密特·布斯特(Friedrich Schmidt-Bleek)能源:能源场景HelmutSchütz博士,Wuppertal Institute,Div。材料流和结构变化:关键物质的环境空间Eberhard K. Seifert博士,工作组新的财富模型:新的经济指标Joachim H. Spangenberg,Wuppertal Institute,Div。用于材料流和结构变化:概念,可疑指标,森林Meike Spitzner,Wuppertal Institute,Div。运输:减少运输,需求和衡量乌尔苏拉·蒂沙纳(Ursula Tischner),沃珀塔尔研究所(Wuppertal Institute)用于物质流和结构变化:可持续性和设计Uta von Winterfeld博士,工作组新的财富模型:可持续消费,Gerrit de Wit博士,Delft,Centrum voor Energiebespaaring,Delft:增长的原因,无增长的影响
1. Ali FF。基于人工智能的 X 射线图像解释方法。国际研究出版与评论杂志。2024;5(5):5300-4。https://doi.org/10.55248/gengpi.5.0524.1253 2. Dodda S、Narne S、Chintala S、Kanungo S、Adedoja T、Sharma S。探索人工智能驱动的图像通信系统创新以增强医学成像应用。电气系统杂志。2024 年。http://dx.doi.org/10.52783/jes.1409 3. Eldin WS、Kaboudan A。人工智能驱动的医学成像平台:图像分析和医疗诊断的进步。ACS 计算机科学进展杂志(印刷版)[互联网]。2023 年;出处:https://asc.journals.ekb.eg/article_328064_68f7507 452d7c0891a5684ff3f069b52.pdf。http://dx.doi.org/10.21608/asc.2023.328064 4. Imtiaz S、Jillani SAQ。人工智能对医学诊断的影响:致编辑的一封信。巴基斯坦医学会杂志。2024 年。https://doi.org/10.47391/JPMA.10668 5. Chaurasia A。算法精准医学:利用人工智能进行医疗保健优化。亚洲生物技术与生物资源技术杂志。2023 年。https://doi.org/10.9734/ajb2t/2023/v9i4190 6. Camm NJ。革命性的心脏诊断:一种用于医学成像中心脏异常检测的人工智能算法——当前和新兴技术的回顾。第 6 卷,临床心脏病学和心血管介入。2024 年。第 01-8 页。7. Das K。人工智能在医学诊断中的应用。2024 年。第 156-61 页。https://doi.org/10.1016/j.artmed.2024.102769 8. Gibbs TN。人工智能在医学成像中的应用:提高诊断准确性和工作流程效率 [互联网]。2023 年。可从以下网址获得:https://osf.io/t7uqe/download 9. Herpe G、Feydy A、d'Assignies G。人工智能算法在医学诊断临床评估中的功效与效果:该奖项授予效果。放射学。 2023;307(5):223132–223132。https://doi.org/10.1148/radiol.223132 10. Pagano S、Müller K、Götz J、Reinhard J、Schindler M、Grifka J 等人。人工智能软件在膝关节全置换术前后下肢 X 光片评估中的作用和效率。临床医学杂志。2023;12(17)。https://doi.org/10.3390/jcm12175498 11. Panda S、Dhaka RK、Panda B。人工智能在医学成像中的应用。2023 年。第 19–32 页。 http://dx.doi.org/10.1201/9781003217497-11 12. Peng Z, Ren X. 基于人工智能的医学影像诊断辅助系统的应用与发展. 国际生物学与生命科学杂志. 2024;6(1):39–43. https://doi.org/10.54097/sb3m1m17 13. Arora P, Behera MD, Saraf SA, Shukla R. 利用人工智能实现药物发现的协同效应:从计算机到诊所. Current Pharmaceutical
参考文献 1. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J 等人。开发用于靶向成纤维细胞活化蛋白的喹啉类治疗诊断配体。J Nucl Med. 2018;59(9):1415- 22。 2. Loktev A, Lindner T, Mier W, Debus J, Altmann A, Jäger D 等人。针对癌症相关成纤维细胞的肿瘤成像方法。J Nucl Med. 2018;59(9):1423-9。 3. Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N, Chiti A。FAPI-PET 成像的最新进展:系统评价和荟萃分析。Eur J Nucl Med Mol Imaging。 2021;48(13):4396-414。4. Dendl K、Koerber SA、Kratochwil C、Cardinale J、Finck R、Dabir M 等人。恶性和非恶性疾病中的 FAP 和 FAPI-PET/CT:完美的共生关系?《癌症》(巴塞尔)。2021;13(19)。5. Croft AP、Campos J、Jansen K、Turner JD、Marshall J、Attar M 等人。不同的成纤维细胞亚群驱动关节炎的炎症和损伤。《自然》。2019;570(7760):246-51。6. Röhrich M、Leitz D、Glatting FM、Wefers AK、Weinheimer O、Flechsig P 等人。成纤维细胞活化蛋白特异性 PET/CT 成像在纤维化间质性肺病和肺癌中的应用:一项转化探索性研究。J Nucl Med。2022;63(1):127-33。7. Bergmann C、Distler JHW、Treutlein C、Tascilar K、Müller AT、Atzinger A 等人。68 Ga-FAPI-04 PET-CT 用于系统性硬化症相关间质性肺病中成纤维细胞活化的分子评估和风险评估:一项单中心试点研究。柳叶刀风湿病学。2021;3(3):e185-e94。8. Bondue B、Castiaux A、Van Simaeys G、Mathey C、Sherer F、Egrise D 等人。特发性肺纤维化患者开始使用抗纤维化药物后 18F-FDG PET/CT 评估早期代谢反应的缺失。Respir Res。2019;20(1):10。9. Luo Y、Pan Q、Yang H、Peng L、Zhang W、Li F。成纤维细胞活化蛋白靶向 PET/CT 与 68 Ga-FAPI 用于成像 IgG4 相关疾病:与 18 F-FDG PET/CT 的比较。J Nucl Med。2021;62(2):266-71。10. Schmidkonz C、Rauber S、Atzinger A、Agarwal R、Götz TI、Soare A 等人。通过成纤维细胞活化蛋白成像从纤维化疾病活动中分离炎症。Ann Rheum Dis。 2020;79(11):1485- 91。11. Hicks RJ, Roselt PJ, Kallur KG, Tothill RW, Mileshkin L. FAPI PET/CT:它会终结18 F- FDG在肿瘤学领域的霸权吗?J Nucl Med. 2021;62(3):296-302。
当然,当复杂的机制和技术能够与人类的身体和思维融合时,更重大的转变是可能的。机器人化是用机器人植入物替换人体某些部位的过程。从某种程度上说,这个过程很久以前就开始了。假肢的最早证据记录在古埃及。研究人员在开罗发现了一个由木头和皮革制成的假脚趾,其历史可以追溯到公元前 950 年至 710 年之间(Finch 等人,2012 年)。1858 年,另一个最古老的假肢在卡普阿(意大利)的一个坟墓中被发现,可追溯到公元前 300 年的萨姆尼特战争。它由铜和木头制成(Bennett Wilson,1964 年)。在中世纪,盔甲师为在战斗中失去肢体的骑士制作铁制假肢(Sellegren,1982 年)。其中一个著名的例子是 16 世纪初制作的德意志帝国骑士、雇佣兵和诗人 Götz von Berlichingen 的假肢,其机制在当时来说非常复杂(歌德)。人造身体部件领域的进步已经如此显著,以至于今天我们几乎每个人都有点像机器人。毫无疑问,地球上大多数人都戴着假指甲、假牙,戴眼镜或隐形眼镜。FDA 估计全球有 324,200 人接受了人工耳蜗植入(Technavio 2016)。2016 年,英国耳部基金会估计全球人工耳蜗植入者的数量约为 600,000 人(耳部基金会 2017)。人工心脏(DeVries 等,1984)、肾脏、肝脏、胰腺(Stamatialis 等,2008)、仿生眼(Boyle 等,2003)、仿生肢体(Farina 和 Aszmann,2014)等等都已成为现实。遗憾的是,尽管赛博格化发展迅速,但却没有太多的理论概念能够阐明其起源和发展趋势。流行的理论包括超人类主义,其基本思想最早由英国遗传学家约翰·伯登·桑德森·霍尔丹于 1923 年提出(Haldane,1924;Huxley,2015)和雷·库兹韦尔(2010)的奇点理论。我们认为,在“大历史”框架内可以很好地理解赛博格化的起源和发展趋势。机器人化是大历史中的一个重要里程碑,这是人类(或旧石器时代晚期)革命与新的“后人类”革命的交汇,虽然其后果在很多方面尚不明确,但显然它将开启对人体产生强烈影响的时代。我们看到机器人化的起源是集体学习,这是大历史的第六个门槛。集体学习是一个由 David Christian 创造的术语(参见 Christian 2018、2012)。这是一个足够强大的交流和共享信息系统,其数量和精度如此之高,以至于新信息在社区甚至物种层面积累(同上,2015)。集体学习成为技术发展的基础,为下一个重要的门槛“农业”和“现代革命”提供了基础。
阿尔茨海默氏病(AD)是一种神经退行性疾病,其特征是记忆力和其他认知功能的前期下降,最终导致痴呆症。根据2019年世界阿尔茨海默氏症的报告,据估计,目前有5000万人患有AD和相关疾病的人,由于人口越来越老化,预计到2050年,这一数字预计将增加到1.5亿。AD是由Alois Alzheimer在1907年描述的,他将广告与大脑中的组织病理学标志相关联:老年斑块和神经纤维缠结(NFTS)。仅在1980年之后才发现斑块主要由淀粉样蛋白β肽的凝集组成(Aβ)(Glenner and Wong 1984),而神经纤维缠结的主要组成部分是错误折叠的tau蛋白(TAU)(tau)(grundke-iq bal et a e e eT al。1986)。 In 1992, Hardy and Higgins (Hardy and Higgins 1992 ) formulated the so-called amyloid cascade hypothesis for the progression of AD: “the deposition of A β , the main component of the plaques, is the causative agent of Alzheimer's pathol- ogy and the neurofibrillary tangles, cell loss, vascular damage, and dementia follow as a direct result of这个沉积”。 随后,这一假设经过了多年的修订:尽管老年斑块与AD相关,但它们的存在与疾病的严重程度并不严格相关。 高水平的可溶性Aβ与认知降低的存在和程度更好地相关。 的确,弥漫性淀粉样蛋白斑块通常存在于认知完整的老年人的大脑中。 类似地,已经证明β单体缺乏神经毒性(Shankar等人 2002)。1986)。In 1992, Hardy and Higgins (Hardy and Higgins 1992 ) formulated the so-called amyloid cascade hypothesis for the progression of AD: “the deposition of A β , the main component of the plaques, is the causative agent of Alzheimer's pathol- ogy and the neurofibrillary tangles, cell loss, vascular damage, and dementia follow as a direct result of这个沉积”。随后,这一假设经过了多年的修订:尽管老年斑块与AD相关,但它们的存在与疾病的严重程度并不严格相关。高水平的可溶性Aβ与认知降低的存在和程度更好地相关。的确,弥漫性淀粉样蛋白斑块通常存在于认知完整的老年人的大脑中。类似地,已经证明β单体缺乏神经毒性(Shankar等人2002)。2002)。一些作者(例如,参见Haass和Selkoe 2007)推翻了传统观点,并声称β的大骨料实际上可能是惰性的,甚至可以保护健康的神经元。2008),实际上被认为是神经保护作用(Giuffrida等人2009; Zou等。此外,实验数据表明,淀粉样蛋白级联假说无法对AD的演变提供完全令人满意的描述,因为β和Tau似乎以协同的方式起作用以引起细胞死亡(例如,参见Ittner和Götz,2011年; Ricciarelli 2011; Ricciarelli and Ricciarelli and ricciarelli and ricciarelli and rricciarelli and ricciarelli and rricciarelli and ricciarelli and 2017)。在这些结果的基础上,已经假定在AD进程中,“Aβ是触发因素,而Tau是子弹”(Bloom 2014)。因此,尽管β和tau目前仍然是AD治疗的主要治疗靶标(但到目前为止缺乏有效的疗法),但我们将在Sect中看到。2最近的文献表明,两种蛋白质之间的相互作用对于疾病的发展至关重要,必须考虑到不应分别针对两种蛋白质的新疗法的发展。我们提到的是Bertsch等。(2021b)讨论当前的医学文献。数学模型是计算机模拟的基础,该模拟是在体内和体外研究中有效补充的硅研究中所谓的。在Carbonell等人中可以找到有关2018年现有数学模型的详尽历史概述。(2018)。在对宏观建模的最新贡献中,我们提到(Bertsch等人。2020; Raj等。2020,2021a; Fornari等。2019,2020; Franchi等。2020; Goriely等。2020; Kevrekidis等。2021;汤普森等。2020,2021; Weickenmeier等。2019)及其参考。Bertsch等人讨论了几种数学模型,它们的困难,利弊。(2021b),作者提出了一个高度灵活的数学模型,旨在考虑
征集作品 – 第 11 届年度竞赛 2024 年哈罗德·J·“哈利”·格林少将采购写作奖挑战:随着美国陆军采购界为未来做准备,我们的重点是采购改革,以加快我们作战人员的能力提升,创新以确保他们保持决定性的技术优势,以及从士兵接触点、作战评估和先前冲突中吸取的经验教训。联合作战人员依靠我们在正确的时间将正确的装备交到他们手中,以遏制冲突,如果做不到,则在战争中获胜。重要的是,我们要批判性地思考并有说服力地撰写有关应对和克服挑战的文章,以向我们的军人提供能力。提案:陆军助理部长办公室(采购、后勤和技术)正在赞助 2024 年哈罗德·J·“哈利”·格林少将采购写作奖,以鼓励批判性写作,重点关注陆军采购挑战和成功克服这些挑战的努力。尽管竞赛对所有人开放,但我们鼓励最大限度的参与,特别是国防部采购工作人员的参与。主题:作者必须从以下类别中选择并撰写有关美国陆军采购的文章:(1) 采购改革,(2) 未来行动,(3) 创新或 (4) 经验教训。投稿要求:投稿 - 四个类别之一 - 必须涉及经验教训、应对当前环境的解决方案、采购中的创造力,或者从采购的角度讨论未来的道路,以便在建设 2030 年及以后的陆军的同时保持战备状态。所有投稿都应将采购过程与士兵联系起来。每篇投稿应在 500 到 1,800 字之间,双倍行距,并使用 Arial 12 号字体。投稿必须是未分类的,并经过作者所在组织批准公开发布/出版。请于 2024 年 9 月 30 日午夜之前将参赛作品发送至 usarmy.pentagon.hqda- asa-alt.mbx.acq-writing-awards@army.mil,并抄送 karen.d.kurtz2.civ@army.mil,同时附上作者的简短(不超过四行)个人简介,包括电子邮件地址和电话号码。提交后不得编辑或修改。艺术作品:每次提交均可附上照片、图形(插图和图表)或两者的组合,但这不是必需的。所有照片的分辨率必须至少为 300 dpi,并且必须为 TIFF 或 JPEG 格式。请提供每张提交照片的摄影师姓名和指挥;每张插图的艺术家姓名和指挥;以及每张图表的来源组织。资格:论文必须是原创的,之前未曾提交过任何写作比赛或出版过(包括在线),并且在 2024 财年内完成。一位作者可以提交多个参赛作品,但每个类别只能提交一个。一个参赛作品可以有两人或两人以上创作。任何撰写有关美国陆军采购文章的作者均可参加竞赛。政府承包商必须在正常工作时间之外完成提交的作品,建议其他人也这样做。评估流程:评审团将评估参赛作品,以确定每个类别的获奖者和荣誉提名作品。参赛作品将根据说服力(20%)、论点的清晰度和强度(20%)、创新性(20%)、与当前或未来环境的相关性(20%)以及可行性(20%)获得积分。每个参赛作品都会被分配一个编号,并盲提交给评审进行评估。奖项:四个类别的获奖者和荣誉提名作品将在 2025 年春季版的《陆军 AL&T》杂志上公布。如果出现平局,则每份参赛作品都将被认可。四位获奖者还将在华盛顿特区举行的美国陆军采购主管年度卓越领导力奖颁奖典礼上受到表彰,该颁奖典礼目前定于 2025 年 1 月 9 日举行。POC:如有疑问,请联系 Karen Kurtz 女士,电子邮箱为 karen.d.kurtz2.civ@army.mil,电话为 (703) 545-0803(办公室),571-232-4228(手机)。
参考文献:[1] Lee, Yong Seuk 等人。“全膝关节置换术中运动校准是机械校准的一种可能替代方案。”膝关节外科、运动创伤学、关节镜 25 (2017): 3467-3479。[2] Courtney, P. Maxwell 和 Gwo-Chin Lee。“初次全膝关节置换术中运动校准的早期结果:文献荟萃分析。”关节成形术杂志 32.6 (2017): 2028-2032。[3] Blakeney, William 等人。“全膝关节置换术中的运动校准比机械校准更能再现正常步态。”膝关节外科、运动创伤学、关节镜 27 (2019): 1410-1417。 [4] Rosa, Sergio Barroso、Kaushik Hazratwala 和 Matthew PR Wilkinson。“关节炎膝关节滑车冠状面排列与目前可用的假体不匹配:对 4116 个膝关节和 45 种植入物设计的形态学分析。”《膝关节外科、运动创伤学和关节镜》31.8 (2023):3116-3123。[5] 王志伟等人。“在运动学排列的全膝关节置换术中,外侧滑车切除术的覆盖不足与胫股骨排列参数相关:一项回顾性临床研究。”《BMC 肌肉骨骼疾病》22.1 (2021):1-9。[6] Jeremić, Dragan V. 等人。 “运动学与机械校准全膝关节置换术(带内侧枢轴部件)的短期随访:病例对照研究。”《骨科与创伤学:外科与研究》106.5(2020 年):921-927。[7] Ziv, Yaron Bar 等人。“接受分期双侧膝关节置换术的患者对其运动校准膝关节的认知度低于对其机械膝关节的认知度。”《骨科杂志》23(2021 年):155-159。[8] Scott, David F. 和 Celeste G. Gray。“与植入运动校准装置的后稳定全膝关节相比,内侧稳定全膝关节的效果更好。”《关节成形术杂志》37.8(2022 年):S852-S858 [9] Scott, David F. 和 Amy A. Hellie。 “植入运动学校准的全膝关节置换术的中屈曲、前后稳定性:后稳定和内侧稳定植入物的随机定量放射学松弛度研究。” JBJS 105.1 (2023): 9-19。[10] JONES, Brett K.;CARLSON, Brian J.;SCOTT, David F. 内侧稳定与单桡骨全膝关节置换术相比,运动学校准的屈曲度更好,早期恢复更好:两年临床结果。膝关节,2023,43: 217-223 [11] Scott, G.,等人。“全膝关节置换术能否同时不受旋转限制和前后稳定?:脉冲荧光透视研究。”骨与关节研究 5.3 (2016): 80-86。 [12] Morra EA、Greenwald AS,《GMK-Sphere 全膝关节设计在站立至下蹲活动中的运动学性能模拟》,2013 年研究报告。[13] Steinbrück、Arnd 等人,《全膝关节置换术后股骨胫骨运动学和负荷模式:后稳定设计与内侧稳定设计的体外比较。”临床生物力学 33(2016 年):42-48。[14] Schütz、Pascal 等人,“GMK 球体植入物在步态活动过程中的运动学评估:动态视频荧光透视研究。”骨科研究杂志® 37.11(2019 年):2337-2347。[15] Hossain F 等人,“内侧顺应球窝胫股关节的膝关节置换术可提供更好的功能”,临床骨科研究。2011 年 1 月;469(1):55-63。[16] Banks S 等人,“内侧顺应和旋转不受约束的 TKA 设计的体内运动学”,国际技术协会第 27 届年会讲稿Arthroplasty,日本京都,2014 年 9 月 25-27 日。[17] Pritchett JW,“患者更喜欢双十字韧带保留或内侧枢轴全膝关节假体”,《关节成形术杂志》,2011 年。[18] Dowsey, Michelle M. 等人,“一项比较内侧稳定全膝关节假体与十字韧带保留和后稳定设计的随机对照试验:全膝关节置换术后临床和功能结果报告。”《关节成形术杂志》35.6(2020 年):1583-1590。[19] 存档数据:Medacta。