本作品(包括其所有部分)受版权保护。未经出版商同意,任何超出版权法严格范围的使用都是被禁止的,并将受到法律制裁。这尤其适用于复制、翻译、缩微胶卷以及电子系统中的存储和处理。
范围生物医学工程 - 生物医学技术(BME-BMT)是一个高质量的论坛,用于交流生物医学工程、医学信息技术和生物技术/生物工程领域的知识。作为一本拥有 60 多年传统的资深同行评审期刊,BME-BMT 面向从事研究、工业或临床实践的工程师、自然科学家和临床医生。该期刊欢迎与诊断成像、图像处理、生物信号处理、建模和仿真、生物力学、医学信息和通信、远程医疗和电子健康、外科手术、微创干预、内窥镜检查、图像引导治疗、诊断和治疗仪器、临床工程、医学微系统和纳米系统、有源植入物、生物传感器、神经工程、神经系统、康复和假肢、生物材料、细胞和组织工程、人工器官、听力学、眼科学、急诊和牙科医学的生物医学工程相关的英文研究文章和评论。
范围生物医学工程-Biomedizinische Technik(BME – BMT)是一个高质量的论坛,用于交流生物医学工程,医疗信息技术和生物技术/生物工程领域的知识。作为一本已建立的同行评审期刊,具有超过60年的传统,BME-BMT介绍了研究,工业或临床实践从事工程师,自然科学家和临床医生。杂志欢迎与诊断成像,图像处理,生物信号过程,建模和模拟,医学上的生物力学,信息和沟通,远程医疗和电子卫生,手术,手术,最小入侵干预措施,末日式和图像指导治疗,诊断和培养业,培养业,培训,培养业,培养业,培训,诊断,诊断,培养业,培训,培养业,培训,培养业,培养业,培训,培训,培养业,培训,培训,培训,培训,培训,培训,培训,培训,培训,培训,培训,培训,培训,培养业,植入物,生物传感器,神经工程,神经系统,修复和假肢,生物材料,细胞和组织工程,人工质器官,用于听力学,眼科,紧急情况和牙科医学的生物医学工程。
会议报告:创新与预防。农业新基因组技术 21.02. - 2024 年 2 月 22 日,图茨青福音学院 在欧盟议会环境委员会处理完基因组技术新法规几天后,来自科学、政治和其他利益集团的 45 多位专家于 2 月 21 日至 22 日来到图茨青福音学院参加“创新与预防”会议。农业新基因组技术。这是第三方资助项目“生物经济中的创新与供应”的最后一次会议,该项目由德国联邦教育与研究部、基督教社会伦理学系(Markus Vogt 教授、Jan Grossarth 教授、Nora Meyer、Sebastian Kistler 博士)和技术-神学-自然科学研究所(TTN、Stephan Schleissing 博士、Anselm 教授)资助。博士Stephan Schleissing介绍了本次会议的背景,即欧洲议会将于2024年2月7日批准欧盟委员会目前提出的关于新基因组植物育种技术(NGT)的妥协提案。折衷方案规定,新的基因组技术只要引入来自各自物种基因库的遗传物质(即所谓的NGT 1植物)就不再受《欧洲基因工程法》的管制,就像2001年欧盟《故意释放指令》所规定的一样。然而,所有其他使用新基因组技术(NGT 2 植物)生产的植物将继续受到严格监管,需获得授权和标签,并且基本上会接受与以前相同的风险评估。然而,欧洲议会原则上批准的折衷方案提出了以下变化:NGT 1植物应强制向最终消费者贴上标签,并且通常不应被授予专利。博士Frank Hartung:从科学角度看新育种技术 会议的第一场演讲从分子生物学角度探讨了植物育种中的新基因组技术这一主题。基本上,新旧育种技术的目的都是创造或改良农作物已知的所需性状,或创造具有更好特性的新植物变种。更好的特性包括在相同投入下获得更高的产量、对生物和非生物因素的适应力,以及为消费者提供的特性,例如更好的口感或更高的营养价值。新基因组技术(NGT)可以在计划的位置对基因组进行改变。利用这些基因组编辑技术,尤其是 CRISPR/Cas,与传统的诱变技术相比,改变的精度大大提高。此外,基因组中非计划位置的意外变化(所谓的脱靶效应)明显减少,并且可以更快、更经济高效地产生所需的突变。这就是它也被称为靶向诱变的原因。在这个过程中,在基因组的计划位置诱导双链断裂,然后通过细胞自身的修复机制以及添加更小或更复杂的基因序列进行重新组装,从而产生突变。迄今为止,研究和使用最频繁的基因组编辑植物是中国,其次是美国。教授、博士Detlef Bartsch:欧盟新基因组技术的监管选项:欧盟研究项目 GeneBEcon 的成果研究项目 GeneBEcon(捕捉基因编辑对可持续生物经济的潜力)是来自不同学科和大学的科学家以及实践合作伙伴的国际合作。该项目的目的首先是开发一个利用马铃薯和微藻进行基因编辑的工具箱,作为
新基因组技术(NGT)及其产生的植物品种(NGT 植物品种)对育种者、农民和消费者具有很高的潜在附加值。它们可以在气候变化时期减少农药、化肥和水的使用,从而保证产量。 NGT 可能意味着育种者的时代变迁。更快的产品开发时间和更短的创新周期最初带来优势。然而,NGT 植根于复杂的法律环境中,特别是与知识产权(专利和植物品种保护)以及市场授权法相互影响。因此,随着NGT的使用增加和NGT植物品种比例的上升,必须考虑知识产权(特别是专利)和批准法的影响。
噬菌体是能够专门攻击和摧毁某些细菌的病毒。尽管它们对抗细菌感染的能力已被人们所知超过 100 年,并且已经进行了一定程度的研究和测试,但直到最近几年,它们的用途才开始受到越来越多的讨论。研究和开发兴趣的重点是噬菌体对缓解日益严重的全球抗生素耐药性问题对人类、动物和环境健康的影响的潜力。噬菌体除了在人类医学中的应用外,在农业和食品工业中对抗细菌病原体方面也有着广泛的应用。但噬菌体制剂在欧盟国家和美国尚未被批准作为药物,在农业和食品工业中可用的产品数量也很少。这就引发了一个与研究和创新政策相关的问题,即阻碍更广泛使用的挑战究竟是科学技术、经济还是主要的法律挑战。为了为德国联邦议院进一步考虑这一重要的未来问题获得平衡的信息基础,德国联邦议院技术评估办公室(TAB)在食品和农业委员会、卫生委员会以及教育、研究和技术评估委员会的倡议下,对噬菌体在各个应用领域的创新潜力以及可能存在的安全和监管问题进行了调查。最终的TAB报告全面概述了噬菌体的当前发展状况和在医学、农业和食品工业中的可能用途,并分析了不同的监管框架。详细介绍并描述了促进和进一步发展噬菌体使用的科学技术、经济、创新政策和法律挑战及行动选择。 TAB报告为德国联邦议院提供了有关该主题的最新且有根据的信息基础,这对于在全球抗生素耐药性问题背景下的研究、卫生、农业和环境政策尤为重要。
对于年轻的魏玛共和国的武装力量——德国国防军来说,这正是挑战。 《凡尔赛条约》不仅对军队兵力设定了上限,而且大大限制了军队的物质装备。武装部队发现自己陷入了军备限制与获得现代技术及其进一步发展的军事必要性之间的冲突。为了不失去联系,德国国防军领导层密切监视国际事态发展并开展秘密研究项目。 1933年《凡尔赛条约》正式终止时,德国的军事技术水平几乎不逊色于其他欧洲国家。如果没有共和国时期进行的准备工作,到 1939 年为止德国国防军的物质重新武装是不可想象的。
Promoter 35s from the cauliflower mosaic virus (CAMV P35S) Promoter 35s from the leper mosaic virus (FMV P35S) Promoter NOS NOS from Agrobacterium Tumefaciens (PNOS) Terminator nose from AGROBACTERIUM Tumefaciens (tnos) Hygroscopicus Gen Barnase from Bacillus Amyloliquefaciens Gen EPSPS from Agrobacterium Tumefaciens, Szczep CP4 Gen GOX with Ochrobactrum Anthropi Gen Pat from Streptomyces Viridochromogenes NPTII gene from Escherichia coli Gen Cry1AB/AC Construct Promoter 35s from the Cauliflower mosaic病毒/Gen PAT与链霉菌的病毒蛋白色,CAMV p35s/pat)构造CTP2-CP4 EPSPPNOS/NPTIA构建体CAMV
摘要 TALEN、CRISPR-CAS9和prime editing(PE)等技术可用于编辑各种细胞的基因组。然而,造血干细胞和免疫细胞的基因组可能很快就会被更频繁地编辑以用于治疗目的。这是因为血液和骨髓作为组织缺乏非常复杂的三维结构。此外,诱导性多能细胞 (iPSc) 被认为是具有治疗潜力的细胞来源,但由于由其发展而来的畸胎瘤,仍然存在风险。还可以补充的是,敲除编辑比编辑更容易将突变基因转变为正常基因。反过来,CAR-T 等细胞或病毒感染的细胞是敲除基因组编辑系统作为治疗的一部分的重要目标。免疫系统细胞似乎也特别适合作为通过合成生物学创造全新细胞类型的起点,其中基因组编辑技术发挥着特殊的作用。所有这些都意味着 CRISPR-CAS9 和 PE 正在引起免疫学家越来越多的兴趣。本文讨论了这些技术的工作原理并解释了其不完善的原因。
Das CRISPR (engl.: Clustered Regularly Interspaced Short Palindromic Repeats )/Cas (engl.: CRISPR-associated )-System wird im Labor dazu verwendet, zielgerichtete Veränderungen am Erbgut eines Organismus vorzunehmen (Genomeditierung/Genome Editing).Die Methode wird derzeit intensiv weiterentwickelt und findet vor allem Anwendung in der Pflanzen- und Tierzucht, der medizinischen Forschung und der Grundlagenforschung.Dieses Hintergrundpapier beschreibt zunächst die natürliche Funktion von CRISPR/Cas in Bakterien und erklärt anschließend, wie CRISPR/Cas als molekularbiologische Technik verwendet wird, um damit DNA an spezifischen Stellen des Erbguts von Zielorganismen zu schneiden.Es wird unter anderem darauf eingegangen, mit welchen Verfahren die Genschere CRISPR/Cas in pflanzliche Zellen eingeschleust werden kann und wie Veränderungen am Erbgut bewirkt werden können.Ursprung von CRISPR/Cas in Bakterien