版权所有 © 2022 OpenACC-Standard.org。本材料由 OpenACC-Standard.org 与 NVIDIA Corporation 合作发布,遵循知识共享署名 4.0 国际 (CC BY 4.0)。这些材料包括对其他实体开发的硬件和软件的引用;适用所有适用的许可和版权。
基于锚点的大规模多视图聚类因其在处理海量数据集方面的有效性而引起了广泛关注。然而,当前的方法主要通过探索锚点图或投影矩阵之间的全局相关性来寻找用于聚类的共识嵌入特征。在本文中,我们提出了一种简单而有效的可扩展多视图张量聚类(S 2 MVTC)方法,我们的重点是学习视图内和跨视图的嵌入特征的相关性。具体而言,我们首先通过将不同视图的嵌入特征堆叠到张量中并旋转它来构造嵌入特征张量。此外,我们构建了一种新颖的张量低频近似(TLFA)算子,它将图相似性结合到嵌入特征学习中,有效地实现不同视图内嵌入特征的平滑表示。此外,对嵌入特征应用共识约束以确保视图间语义一致性。在六个大规模多视图数据集上的实验结果表明,S 2 MVTC 在聚类性能和 CPU 执行时间方面明显优于最先进的算法,尤其是在处理海量数据时。S 2 MVTC 的代码已公开发布在 https://github.com/longzhen520/S2MVTC。
I.简介基于v iSion的导航是下一代On-On-On-On-On-On-Os-andActivedEbrisredebremoval任务的关键技术。在这些情况下,指导和控制定律应采用相对的Chaser-Chaser-Toget姿势(即位置和态度)喂食,这可能会从单眼图像中方便地估算,因为这些传感器是简单,光线的,并且消耗了很少的功率。传统上,图像处理算法分为1)手工制作的特征[1,2]和2)基于深度学习的[3-14]。然而,前者受到较低鲁棒性的影响,对典型的空间图像特征(例如,信噪比低,严重和迅速变化的照明条件)和背景。神经网络(NNS)可以通过适当的培训克服此类弱点,但通常会导致高计算负担,这与典型的船上处理能力几乎不兼容。
摘要:近似计算技术(ACT)是实现减少能量,时间延迟和硬件大小的有希望的解决方案,用于嵌入式机器学习算法的实现。在本文中,我们介绍了使用高级合成(HLS)的算法级别的近似张力支持向量机(SVM)分类的第一个FPGA实现。采用了触摸模式分类框架来验证拟议实施的有效性。与最先进的实施相比,拟议的实施将功耗的速度降低了49%,加速度为3.2倍。此外,硬件资源减少了40%,同时消耗的能量减少了82%的能量,而精度损失小于5%。
量子状态的实时和想象的时间演变是研究量子动态,准备接地状态或计算热力学可观察物的强大工具。在近期设备上,各种量子时间演变是这些任务的有前途的候选人,因为可以量身定制所需的电路模型以权衡可用的设备功能和近似准确性。但是,即使可以可靠地执行电路,由于量子几何张量(QGT)的计算,变异量子时间演化算法对于相关系统大小而迅速变得不可行。在这项工作中,我们通过利用双重公式来规避对QGT的明确评估来解决这个缩放问题。我们演示了海森伯格汉密尔顿的时间演变的算法,并表明它以标准变化量子时间演化算法的成本的一小部分准确地重现了系统动力学。作为量子假想时间演变的应用,我们计算了Heisenberg模型的热力学观察到的每个位置的能量。
扩散张量成像(DTI)是磁共振成像(MRI)的高级方式,它扩展了扩散加权成像(DWI)的能力。DWI测量水扩散信号,DTI利用来自多个扩散方向的数据来绘制大脑中水分子的三维扩散,从而使其微观结构组织的评估。源自DTI的密钥指标包括分数各向异性(FA),它反映了白质微结构的完整性;平均扩散率(MD),这表明了总水扩散的大小,并且与细胞密度和细胞外空间有关。和径向扩散率(RD),代表垂直于轴突纤维的扩散,与髓磷脂状况相关[1]。dTI已应用于神经康复领域,研究报告了基于白质分析[2-4],其效用在预测中风和创伤性脑损伤后的运动和功能恢复方面。此外,DTI已用于调查神经退行性疾病的白质变化[5-7],并提供了一种定量方法来评估细微的微结构变化,而常规MRI很难检测到这些变化[8,9]。
雷达在恶劣天气下的稳健性和提供动态信息的能力使其成为高级驾驶辅助系统 (ADAS) 中摄像头和激光雷达的宝贵补充 [1]。尽管用于 RGB 图像和激光雷达点云 (PC) 的语义分割深度学习方法已经很成熟,但它们在雷达中的应用仍未得到充分探索,尤其是包含额外海拔信息的 4D 雷达数据 [2] [3] [4] [5]。本文通过提出一种直接在距离-方位角-海拔-多普勒 (RAED) 张量上执行语义分割的方法来解决这一研究空白。此外,还引入了一种新颖的自动标记流程来在 RaDelft 数据集中生成逐点多类标签,从而实现使用雷达数据的联合检测和分类。
组委会首席赞助人:G。Viswanthan博士,总理顾客:Sankar Viswanathan先生,副总裁Sekar Viswanathan博士,G.V. Selvam,副总裁Sandhiya Pentareddy博士,执行董事MS。祈祷S. Viswanathan助理副副副总统:V。S. Bhaascaran副校长Partha Sharathiti Mallick博士Mallick Pro-Vice Chancellor博士T. Jayabarathhi博士,登记官召集人:组委会首席赞助人:G。Viswanthan博士,总理顾客:Sankar Viswanathan先生,副总裁Sekar Viswanathan博士,G.V.Selvam,副总裁Sandhiya Pentareddy博士,执行董事MS。祈祷S. Viswanathan助理副副副总统:V。S. Bhaascaran副校长Partha Sharathiti Mallick博士Mallick Pro-Vice Chancellor博士T. Jayabarathhi博士,登记官召集人:
随着量子硬件的快速发展,量子电路的高效模拟已变得不可或缺。主要的模拟方法基于状态向量和张量网络。随着目前量子器件中量子比特和量子门的数量不断增加,传统的基于状态向量的量子电路模拟方法由于希尔伯特空间的庞大和广泛的纠缠而显得力不从心。因此,野蛮的张量网络模拟算法成为此类场景下的唯一可行解决方案。张量网络模拟算法面临的两个主要挑战是最优收缩路径寻找和在现代计算设备上的高效执行,而后者决定了实际的效率。在本研究中,我们研究了此类张量网络模拟在现代 GPU 上的优化,并从计算效率和准确性两个方面提出了通用的优化策略。首先,我们提出将关键的爱因斯坦求和运算转化为 GEMM 运算,利用张量网络模拟的具体特性来放大 GPU 的效率。其次,通过分析量子电路的数据特性,我们采用扩展精度保证模拟结果的准确性,并采用混合精度充分发挥GPU的潜力,使模拟速度更快、精度更高。数值实验表明,在Sycamore的18周期情况下,我们的方法可以将随机量子电路样本的验证时间缩短3.96倍,在一台A100上持续性能超过21 TFLOPS。该方法可以轻松扩展到20周期的情况,保持相同的性能,与最先进的基于CPU的结果相比加速12.5倍,与文献中报道的最先进的基于GPU的结果相比加速4.48-6.78倍。此外,本文提出的策略对