1极端条件的联合实验室重要的特性,制造过程测试技术的关键实验室,教育部,国家主要的能源材料的国家主要实验室,西南科学技术大学,Mianyang 621010,中国2个物理与电子学院,中国北部大学,中国北部大学,中国北部大学,jandsha 410083,j ghandsha 410083,j Chandsha 41008 3 434023,中国; shubocheng@yangtzeu.edu.cn 4 416000 Jishou University,Jishou 416000,中国5物理学系,金宗大学,金宗大学,Jinzhong 030619,中国; phys.zhangjg@gmail.com 6物理学学院,吉安根技术大学,杭州310023,中国; chaojuntang@126.com 7 Guangxi精密导航技术与应用主要实验室,Guilin电子技术大学,Guilin 541004,中国8号物理与电子信息工程学院,荷西工程大学,小号432000,中国432000,中国); yougenyi@csu.edu.cn(y.y。);电话: +86-0816-2480830(Z.Y。)†这些作者为这项工作做出了同样的贡献。
1。Andrei,E。Y.等。 Moiré材料的奇迹。 nat Rev Mater 6,201–206(2021)。 2。 Cao,Y。等。 在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。 自然556,80–84(2018)。 3。 Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Andrei,E。Y.等。Moiré材料的奇迹。nat Rev Mater 6,201–206(2021)。2。Cao,Y。等。 在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。 自然556,80–84(2018)。 3。 Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cao,Y。等。在魔术角石墨烯超级晶格中半填充时相关的绝缘体行为。自然556,80–84(2018)。3。Tang,Y。等。 在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。 自然579,353–358(2020)。 4。 Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Tang,Y。等。在WSE2/WS2Moiré超级晶格中模拟Hubbard模型物理。自然579,353–358(2020)。4。Regan,E。C。等。 Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。 自然579,359–363(2020)。 5。 Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Regan,E。C。等。Mott和Wigner Crystal态在WSE 2 /WS 2Moiré超级晶格中。自然579,359–363(2020)。5。Wang,L。等。 在扭曲的双层过渡金属二分法中相关的电子相。 nat Mater 19,861–866(2020)。 6。 Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Wang,L。等。在扭曲的双层过渡金属二分法中相关的电子相。nat Mater 19,861–866(2020)。6。Cao,Y。等。 魔法石墨烯超级晶格中的非常规的超导性。 自然556,43-50(2018)。 7。 lu,X。等。 超导体,轨道磁铁和魔法双层石墨烯中的相关状态。 自然574,653–657(2019)。 8。 Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cao,Y。等。魔法石墨烯超级晶格中的非常规的超导性。自然556,43-50(2018)。7。lu,X。等。超导体,轨道磁铁和魔法双层石墨烯中的相关状态。自然574,653–657(2019)。8。Cai,J。等。 扭曲的Mote2中分数量子异常圆度状态的签名。 自然622,63-68(2023)。 9。 Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Cai,J。等。扭曲的Mote2中分数量子异常圆度状态的签名。自然622,63-68(2023)。9。Park,H。等。 观察分数量化的异常霍尔效应。 自然622,74–79(2023)。 10。 Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Park,H。等。观察分数量化的异常霍尔效应。自然622,74–79(2023)。10。Zeng,Y。等。 MoiréMote2中分数Chern绝缘子的热力学证据。 自然622,69–73(2023)。 11。 lu,Z。等。 自然626,759–764(2024)。Zeng,Y。等。MoiréMote2中分数Chern绝缘子的热力学证据。自然622,69–73(2023)。11。lu,Z。等。自然626,759–764(2024)。多层石墨烯中的分数量子异常霍尔效应。12。Xu,F。等。观察整数和分数量子异常大厅效应
回顾文章对心脏转移的摘要,尽管很少见,但在晚期癌症患者中是一个关键的并发症,通常与肺,乳腺癌和黑色素瘤肿瘤有关。本文全面回顾了这些转移的发生率,潜在的生物学机制,各种临床表现以及诊断方法和可用的治疗选择。由于心脏的解剖学复杂性以及可能影响其肿瘤的多样性,心脏转移的有效管理需要一种多学科的方法,涉及肿瘤学家,心脏病学家,放射科医生和外科医生。这些患者的预后通常是保留的,平均生存率有限,这强调了早期检测过程中持续进展和发展更有效疗法的需求。未来的观点包括基于肿瘤分子特征的定制治疗,新靶疗法和免疫疗法的整合以及高级图像技术和循环生物标志物的应用以改善疾病进展监测和对治疗的反应。不同的医学专业与建立致力于治疗心脏肿瘤的卓越中心之间的合作对于改善临床护理和结果至关重要。关键词:心脏转移,晚期肿瘤,生物学机制,诊断,靶疗法,免疫疗法,预后,多学科方法。
2024卫生部。只要引用了源而不是出售或任何商业目的,就允许该工作的部分或全部复制。对本工作的文本和图像版权的责任来自Conitec。Preparation, Distribution and Information Ministry of Health Science, Technology and Innovation Secretariat and the Economic-Industrial Health Complex- Sectics Department of Health Technology Management and Incorporation- DGITS-General Coordination of Clinical Protocol Management and Therapeutic Guidelines- CGPCDT Esplanade of Ministries, Block G, 8th Floor CEP: 70.058-900- Brasília/DF Tel. : (61) 3315-2848 Website: https://www.gov.br/conitec/pt-br E-mail: conitec@saude.gov.br Coordination-General Management of Clinical Protocols and Therapeutic Guidelines-CGPCDT/DGITS/MS Management Management and Incorporation Committee in Technology Incorporation Committee Health - Dgits General Coordination of Clinical Protocol Management and治疗指南-CGPCDTPreparation, Distribution and Information Ministry of Health Science, Technology and Innovation Secretariat and the Economic-Industrial Health Complex- Sectics Department of Health Technology Management and Incorporation- DGITS-General Coordination of Clinical Protocol Management and Therapeutic Guidelines- CGPCDT Esplanade of Ministries, Block G, 8th Floor CEP: 70.058-900- Brasília/DF Tel.: (61) 3315-2848 Website: https://www.gov.br/conitec/pt-br E-mail: conitec@saude.gov.br Coordination-General Management of Clinical Protocols and Therapeutic Guidelines-CGPCDT/DGITS/MS Management Management and Incorporation Committee in Technology Incorporation Committee Health - Dgits General Coordination of Clinical Protocol Management and治疗指南-CGPCDT: (61) 3315-2848 Website: https://www.gov.br/conitec/pt-br E-mail: conitec@saude.gov.br Coordination-General Management of Clinical Protocols and Therapeutic Guidelines-CGPCDT/DGITS/MS Management Management and Incorporation Committee in Technology Incorporation Committee Health - Dgits General Coordination of Clinical Protocol Management and治疗指南-CGPCDT
PCDT委员会是负责宪法或临床准则更改建议的论坛。它由15名成员组成,是卫生部每个秘书处的代表,由科学,技术与创新秘书处代表和卫生工业综合体(Sectics)主持,以及以下每个机构的一名代表:国家健康卫生委员会委员会委员会委员会社会卫生委员会委员会委员会委员会委员会委员全国市政卫生秘书处 - 联邦医学委员会 - CFM,巴西医学协会 - AMB和卫生技术评估中心 - 属于巴西卫生技术评估网络的NATS -NATS -REBRATS。由管理和成立技术部(DGITS/SECTICS/MS),CONITEC活动的管理和协调来决定执行秘书处。
摘要肺疾病纤维化,例如慢性阻塞性肺部疾病,急性肺损伤和Covid 19后的肺部疾病被认为是过去十年中的主要健康问题。用间充质干细胞(MSC)的细胞疗法提供了一种与抗炎,免疫调节剂,再生,亲血管生成和抗纤维化特性相关的肺纤维化方法。治疗效果可以与MSC - 分泌组有关,MSC分泌组是由游离溶解蛋白和细胞外囊泡(EV)制成的。本综述总结了一些与MSC衍生产品在肺部疾病前临床模型中的功效和安全性有关的发现的最新文献,显示了MSC分泌组中包含的活性物质及其与组织再生有关的机制。透视视图是关于分为高质量,安全有效的药品的秘密观点,关键词:肺纤维化,炎症,间充质干细胞,Secretoms
超快电子显微镜提供了一种类似电影和时间的材料结构动力学的访问,但是到目前为止,基本原子运动或电子动力学的速度太快而无法解决。在这里,我们通过激光生成的Terahertz光的单光周期报告了透射电子显微镜中电子脉冲的全光控制,压缩和表征。这个概念提供了孤立的电子脉冲,并将透射电子显微镜的空间分辨率与通过激光光周期提供的时间分辨率合并。我们还报告了多电子状态的全光控制,并在时域中找到了实质性的两电子和三电子反相关。这些结果开辟了可能性原子和电子运动的可能性,以及它们在时空中基本维度上的量子相关性。
近年来,电动汽车市场的增长显着增长。该行业的主要目标是降低生产成本。值得注意的是,构成总生产成本的40%的电池组将其中约64%分配给电极的制造。监视关键电池参数,例如厚度,负载,密度,电导率和孔隙率,以最大程度地减少电极生产过程中的废物。直到最近,还没有能够模拟这些参数的技术。但是,Terahertz技术已成为一种评估电池电极的强大,无损和安全的方法。电池电极涂在由铝和铜等材料制成的底物上。由于METELS完全反映了Terahertz波,因此可以在反射模式下测量电极。这种方法允许确定涂层的厚度及其复杂的折射率,可以解释以推断关键电极参数。在我们的研究中,我们利用了Teraview的最新进步Teracota,Teracota是一种设计用于工业应用的Terahertz系统,配备了自我引用的Terahertz传感器。传感器安装在龙门上,提供了电极加载的Terahertz图像,并可以与光学图像进行直接比较,从而揭示了阴极上的缺陷。当比较通过Terahertz传感器获得的密度测量与实验室中测量的密度测量值时,我们达到了0.01 g/cm3的精度。关键字:ndt; Terahertz;光谱;电池电极;电动车辆此外,通过Terahertz系统的厚度测量与使用毫米在小于1 µm以内获得的厚度测量。同样,当比较通过Terahertz与通过四点探针测量的DC电导率进行比较时,趋势是一致的。正在进行的孔隙率进行的研究表明,折射率与特定电极集的功率相关,表明可能具有更广泛的应用。这种全面的方法证明了将Terahertz技术集成到电池电极制造过程中的重要优势,从而通过提高效率和降低浪费来彻底改变行业。
神经元,尤其是在帕金森氏病等疾病下。但是,从这些研究疗法到临床实践的过渡面临着巨大的挑战。目标:本文旨在回顾有关干细胞疗法在治疗神经退行性疾病中使用的当前文献,解决了最新进展,所使用的细胞类型,作用机理以及持续的挑战。该评论旨在全面了解该领域的进步和局限性,从而有助于发展更有效的治疗策略。结果:审查表明,IPSC和ESC都有可能在各种类型的神经元细胞中区分自己,从而替代受损的神经元。临床和临床前试验表明运动和认知功能的改善,尤其是对帕金森氏病的治疗。但是,这些疗法的实际应用面临着挑战,例如肿瘤形成,免疫排斥和对移植细胞的功能整合的需求。间充质干细胞(MSC)也表现出希望,尤其是因为它们的伦理较低争议和易于获得。结论:干细胞疗法具有治疗神经退行性疾病的变革潜力,为患者生活质量的显着改善提供了希望。但是,克服相关的挑战,例如安全性和长期有效性,对于成功实施这些疗法至关重要。avançoscontínuosna pesquisa e desenvolvimento sinvolvimento sinciais para para realizar plenamente o pterencialterapêuticodascélulas-tronco。Palavras-Chave:Terapias comcélulas-tronco; doenças神经退行性植物; Neurogênese; Tratamento Renerativo。摘要简介:干细胞疗法的进步代表了再生医学中的一个重要里程碑,为治疗神经退行性疾病提供了新的观点。诱导多能干细胞(IPSC)和胚胎干细胞(ESC)出现是神经元再生的有希望的选择,尤其是在帕金森氏病等疾病中。但是,这些疗法从研究到临床实践的过渡面临着巨大的挑战。目标:本文旨在回顾有关干细胞疗法治疗神经退行性疾病的当前文献,解决了最新进展,所使用的细胞类型,作用机理和持续的挑战。审查旨在对该领域的进度和局限性进行全面的看法,从而有助于发展更有效的治疗策略。结果:审查表明,IPSC和ESC都有区分各种类型的神经元细胞的潜力,从而可以替代受损的神经元。临床和临床前试验表明,运动和认知功能的改善,在治疗帕金森氏病方面取得了显着进展。然而,这些疗法的实际应用面临挑战,例如肿瘤形成,免疫排斥和对移植细胞的功能整合的需求。间充质干细胞(MSC)也显示出希望,尤其是由于其伦理较低的争议和易于采购。结论:干细胞疗法具有治疗神经退行性疾病的变革潜力,为患者生活质量的显着改善提供了希望。但是,克服相关的挑战,例如长期安全性和功效,对于成功实施这些疗法至关重要。持续的研发对于完全实现干细胞的治疗潜力至关重要。关键字:干细胞疗法;神经退行性疾病;神经发生;再生治疗。恢复介绍:El Avance en las terapiasconcélulasmadre代表UN HITO INDICATIVO EN LA LA LA LA MEDICINA REGENERATIVA,OFRECIENDO NUEVAS PRESPECTIVAS PARA EL TRATAMIENTO DEENFERMEDO DEERFERMEDEDS NEURODEDADES NEURODENEDEDADS NEURODEGENERATIVAS。lascélulasmadre pluripotentes诱因(IPSCS)y lascélulasmadre embrionarias(ESC)Emperen como opciones prometedoras prometedoras para laregeneración神经元,Especececepecialmente en condiciones condiciones como como como laenfermedad de parkinson parkinson parkinson。sin禁运,latransicióndeestas terapias de larespjitionaCiónalaprácticaClácticaClínicaEnfrendaDesafíos考虑。Objetivos: Este artículo tiene como objetivo revisar la literatura actual sobre el uso de terapias con células madre en el tratamiento de enfermedades neurodegenerativas, abordando los avances recientes, los tipos de células utilizadas, los mecanismos de acción y los DesafíosPersistentes。larevisiónBuscaProporcionar unavisiónIntegral de los progresos y lipsaciones y limtaCiones en este campo,pronuyendo al desarlollo de estrategias teraptegiasterapéuticasaSMásmásefectivas。结果:审查表明,IPSC和ESC都有区分各种类型的神经元细胞的潜力,从而可以替代受损的神经元。 div>临床和临床前试验表明,运动和认知功能的改善,在帕金森氏病的治疗方面取得了显着进步。 div>然而,这些疗法的实际应用面临挑战,例如肿瘤形成,免疫排斥和对移植细胞的功能整合的需求。 div>中Quimatos干细胞(MSC)也表现出希望,尤其是由于其伦理较低的争议和易于获得的原因。 div>结论:干细胞疗法具有治疗神经退行性疾病的变革潜力,为患者生活质量的显着改善提供了希望。 div>但是,克服相关挑战(例如长期安全性和功效)对于成功实施这些疗法至关重要。 div>研发中的持续进展对于完全发挥干细胞的治疗潜力至关重要。 div>关键字:干细胞疗法;神经退行性疾病;神经发生;再生治疗 div>
Terahertz(THZ)频带在无线通信中表现出了非凡的承诺。其出色的数据传输速度和非侵入性质,除其他优势外,还具有在6G和7G技术(包括移动设备,环境监测和医疗保健)中解锁巨大可能性的潜力。医学领域中的一个特定应用是心脏的生物监测设备。我们在我们的项目中探讨了这一应用,该应用程序旨在确保与人类心脏组织相互作用时THZ辐射的安全性。为此,我们通过开发人心脏的2D和3D模型来模拟心脏组织中Thz波的波传播和热效应,从而扩展了Comsol多物理学中的现有计算模型©。这些模型有助于定义下一代生物医学设备中THZ辐射的安全限制,从而加速了无线网络的发展。